• Open access free of charge
    • Free and high quality figure editing
    • Free widest possible global promotion for your research
Volume 5 Issue 1
Jan.  2023
Article Contents

Li C, Piao Y C, Zhang F H, Zhang Y, Hu Y X, Wang Y F. 2023. Understand anisotropy dependence of damage evolution and material removal during nanoscratch of MgF2 single crystals. Int. J. Extrem. Manuf. 5 015101.
Citation: Li C, Piao Y C, Zhang F H, Zhang Y, Hu Y X, Wang Y F. 2023. Understand anisotropy dependence of damage evolution and material removal during nanoscratch of MgF2 single crystals. Int. J. Extrem. Manuf. 015101.

Understand anisotropy dependence of damage evolution and material removal during nanoscratch of MgF2 single crystals


doi: 10.1088/2631-7990/ac9eed
More Information
  • Publish Date: 2023-01-30
  • To understand the anisotropy dependence of the damage evolution and material removal during the machining process of MgF2 single crystals, nanoscratch tests of MgF2 single crystals with different crystal planes and directions were systematically performed, and surface morphologies of the scratched grooves under different conditions were analyzed. The experimental results indicated that anisotropy considerably affected the damage evolution in the machining process of MgF2 single crystals. A stress field model induced by the scratch was developed by considering the anisotropy, which indicated that during the loading process, median cracks induced by the tensile stress initiated and propagated at the front of the indenter. Lateral cracks induced by tensile stress initiated and propagated on the subsurface during the unloading process. In addition, surface radial cracks induced by the tensile stress were easily generated during the unloading process. The stress change led to the deflection of the propagation direction of lateral cracks. Therefore, the lateral cracks propagated to the workpiece surface, resulting in brittle removal in the form of chunk chips. The plastic deformation parameter indicated that the more the slip systems were activated, the more easily the plastic deformation occurred. The cleavage fracture parameter indicated that the cracks propagated along the activated cleavage planes, and the brittle chunk removal was owing to the subsurface cleavage cracks propagating to the crystal surface. Under the same processing parameters, the scratch of the (001) crystal plane along the [100] crystal-orientation was found to be the most conducive to achieving plastic machining of MgF2 single crystals. The theoretical results agreed well with the experimental results, which will not only enhance the understanding of the anisotropy dependence of the damage evolution and removal process during the machining of MgF2 crystals, but also provide a theoretical foundation for achieving the high-efficiency and low-damage processing of anisotropic single crystals.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(530) PDF Downloads(62) Citation(0)

Understand anisotropy dependence of damage evolution and material removal during nanoscratch of MgF2 single crystals

doi: 10.1088/2631-7990/ac9eed
  • State Key Laboratory of Robotics and System (HIT), Harbin Institute of Technology, Harbin 150001, People's Republic of China

Abstract: 

To understand the anisotropy dependence of the damage evolution and material removal during the machining process of MgF2 single crystals, nanoscratch tests of MgF2 single crystals with different crystal planes and directions were systematically performed, and surface morphologies of the scratched grooves under different conditions were analyzed. The experimental results indicated that anisotropy considerably affected the damage evolution in the machining process of MgF2 single crystals. A stress field model induced by the scratch was developed by considering the anisotropy, which indicated that during the loading process, median cracks induced by the tensile stress initiated and propagated at the front of the indenter. Lateral cracks induced by tensile stress initiated and propagated on the subsurface during the unloading process. In addition, surface radial cracks induced by the tensile stress were easily generated during the unloading process. The stress change led to the deflection of the propagation direction of lateral cracks. Therefore, the lateral cracks propagated to the workpiece surface, resulting in brittle removal in the form of chunk chips. The plastic deformation parameter indicated that the more the slip systems were activated, the more easily the plastic deformation occurred. The cleavage fracture parameter indicated that the cracks propagated along the activated cleavage planes, and the brittle chunk removal was owing to the subsurface cleavage cracks propagating to the crystal surface. Under the same processing parameters, the scratch of the (001) crystal plane along the [100] crystal-orientation was found to be the most conducive to achieving plastic machining of MgF2 single crystals. The theoretical results agreed well with the experimental results, which will not only enhance the understanding of the anisotropy dependence of the damage evolution and removal process during the machining of MgF2 crystals, but also provide a theoretical foundation for achieving the high-efficiency and low-damage processing of anisotropic single crystals.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return