• Open access free of charge
  • Free and professional English polishing
  • Free and high quality figure editing
  • Free widest possible global promotion for your research
Volume 4 Issue 1
Dec.  2021
Article Contents

Yong J L, Yang Q, Huo J L et al. Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100 μm) for bubble/gas manipulation. Int. J. Extrem. Manuf. 4 015002(2022).
Citation:

Yong J L, Yang Q, Huo J L et al. Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100 μm) for bubble/gas manipulation. Int. J. Extrem. Manuf. 4 015002(2022).

Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100 μm) for bubble/gas manipulation


doi: 10.1088/2631-7990/ac466f
More Information
  • Publish Date: 2021-12-08
  • Underwater transportation of bubbles and gases has essential applications in manipulating and using gas, but achieving this function at the microscopic level remains a significant challenge. Here, we report a strategy to self-transport gas in water along a laser-induced open superhydrophobic microchannel with a width less than 100 μm. The femtosecond laser can directly write superhydrophobic and underwater superaerophilic microgrooves on the polytetrafluoroethylene (PTFE) surfaces. In water, the single laser-induced microgroove and water medium generate a hollow microchannel. When the microchannel connects two superhydrophobic regions in water, the gas spontaneously travels from the small region to the large area along this hollow microchannel. Gas self-transportation can be extended to laser-drilled microholes through a thin PTFE sheet, which can even achieve anti-buoyancy unidirectional penetration. The gas can overcome the bubble's buoyance and spontaneously travel downward. The Laplace pressure difference drives the processes of spontaneous gas transportation and unidirectional bubble passage. We believe the property of gas self-transportation in the femtosecond laser-structured open superhydrophobic and underwater superaerophilic microgrooves/microholes has significant potential applications related to manipulating underwater gas.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(168) PDF Downloads(35) Citation(0)

Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100 μm) for bubble/gas manipulation

doi: 10.1088/2631-7990/ac466f
  • 1 State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China;
  • 2 School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China

Abstract: 

Underwater transportation of bubbles and gases has essential applications in manipulating and using gas, but achieving this function at the microscopic level remains a significant challenge. Here, we report a strategy to self-transport gas in water along a laser-induced open superhydrophobic microchannel with a width less than 100 μm. The femtosecond laser can directly write superhydrophobic and underwater superaerophilic microgrooves on the polytetrafluoroethylene (PTFE) surfaces. In water, the single laser-induced microgroove and water medium generate a hollow microchannel. When the microchannel connects two superhydrophobic regions in water, the gas spontaneously travels from the small region to the large area along this hollow microchannel. Gas self-transportation can be extended to laser-drilled microholes through a thin PTFE sheet, which can even achieve anti-buoyancy unidirectional penetration. The gas can overcome the bubble's buoyance and spontaneously travel downward. The Laplace pressure difference drives the processes of spontaneous gas transportation and unidirectional bubble passage. We believe the property of gas self-transportation in the femtosecond laser-structured open superhydrophobic and underwater superaerophilic microgrooves/microholes has significant potential applications related to manipulating underwater gas.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return