3D bioprinted unidirectional neural network and its application for alcoholic neurodegeneration
-
Abstract
The brain exhibits complex physiology characterized by unique features such as a brain-specific extracellular matrix, compartmentalized structure (white and grey matter), and an aligned axonal network. These physiological characteristics underpin brain function and facilitate signal transduction similar to that in an electrical circuit. Therefore, investigating these features in vitro is crucial for understanding the interactions between neuronal signal transduction processes and the pathology of neurological diseases. Compared to neurons on patterned substrates, three-dimensional (3D) bioprinting-based neural models provide significant advantages in replicating axonal kinetics without physical limitations. This study proposes the development of a 3D bioprinted engineered neural network (BENN) model to replicate the physiological features of the brain, suggesting its application as a tool for studying neurodegenerative diseases. We employed 3D bioprinting to reconstruct the compartmentalized structure of the brain, and controlled the directionality of axonal growth by applying electrical stimuli to the printed neural structure for overcoming spatial constraints. The reconstructed axonal network demonstrated reliability as a neural analog, including the visualization of mature neuronal features and spontaneous calcium reactions. Furthermore, these brain-like neural network models have demonstrated usefulness for studying neurodegeneration by enabling the visualization of degenerative pathophysiology in alcohol-exposed neurons. The BENN facilitates the visualization of region-specific pathological markers in soma or axon populations, including amyloid-beta formation and axonal deformation. Overall, the BENN closely mimics brain physiology, offers insights into the dynamics of axonal networks, and can be applied to studying neurological diseases.
-
-