• Open access free of charge
    • Free and high quality figure editing
    • Free widest possible global promotion for your research
Volume 6 Issue 3
Feb.  2024
Article Contents

Xiao Y M, Song C H, Liu Z B, Liu L Q, Zhou H X, Wang D, Yang Y Q. 2024. In-situ additive manufacturing of high strength yet ductility titanium composites with gradient layered structure using N2. Int. J. Extrem. Manuf. 6 035001.
Citation: Xiao Y M, Song C H, Liu Z B, Liu L Q, Zhou H X, Wang D, Yang Y Q. 2024. In-situ additive manufacturing of high strength yet ductility titanium composites with gradient layered structure using N2Int. J. Extrem. Manuf. 035001.

In-situ additive manufacturing of high strength yet ductility titanium composites with gradient layered structure using N2


doi: 10.1088/2631-7990/ad2602
More Information
  • Publish Date: 2024-02-22
  • It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials. Laser powder bed fusion (LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials. In this work, we used LPBF to selectively prepare TiN/Ti gradient layered structure (GLSTi) composites by using different N2–Ar ratios during the LPBF process. We systematically investigated the mechanisms of in-situ synthesis TiN, high strength and ductility of GLSTi composites using microscopic analysis, TEM characterization, and tensile testing with digital image correlation. Besides, a digital correspondence was established between the N2 concentration and the volume fraction of LPBF in-situ synthesized TiN. Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar. Specifically, the tensile strength of GLSTi was more than 1.5 times higher than that of LPBF-formed pure titanium, reaching up to 1100 MPa, while maintaining a high elongation at fracture of 17%. GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites, and the hetero-deformation induced strengthening effect formed by the TiN/Ti layered structure explained its strength-plasticity balanced principle. The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N2 in-situ synthesis layer. Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(167) PDF Downloads(32) Citation(0)

In-situ additive manufacturing of high strength yet ductility titanium composites with gradient layered structure using N2

doi: 10.1088/2631-7990/ad2602
  • School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China

Abstract: 

It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials. Laser powder bed fusion (LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials. In this work, we used LPBF to selectively prepare TiN/Ti gradient layered structure (GLSTi) composites by using different N2–Ar ratios during the LPBF process. We systematically investigated the mechanisms of in-situ synthesis TiN, high strength and ductility of GLSTi composites using microscopic analysis, TEM characterization, and tensile testing with digital image correlation. Besides, a digital correspondence was established between the N2 concentration and the volume fraction of LPBF in-situ synthesized TiN. Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar. Specifically, the tensile strength of GLSTi was more than 1.5 times higher than that of LPBF-formed pure titanium, reaching up to 1100 MPa, while maintaining a high elongation at fracture of 17%. GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites, and the hetero-deformation induced strengthening effect formed by the TiN/Ti layered structure explained its strength-plasticity balanced principle. The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N2 in-situ synthesis layer. Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites.

Reference (68)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return