• Open access free of charge
    • Free and high quality figure editing
    • Free widest possible global promotion for your research
Volume 6 Issue 2
Jan.  2024
Article Contents

Zhao G L, Zhao B, Ding W F, Xin L J, Nian Z W, Peng J H, He N, Xu J H. 2024. Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community: a comparative analysis. Int. J. Extrem. Manuf. 6 022007.
Citation: Zhao G L, Zhao B, Ding W F, Xin L J, Nian Z W, Peng J H, He N, Xu J H. 2024. Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community: a comparative analysis. Int. J. Extrem. Manuf. 022007.

Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community: a comparative analysis


doi: 10.1088/2631-7990/ad16d6
More Information
  • Publish Date: 2024-01-30
  • The aerospace community widely uses difficult-to-cut materials, such as titanium alloys, high-temperature alloys, metal/ceramic/polymer matrix composites, hard and brittle materials, and geometrically complex components, such as thin-walled structures, microchannels, and complex surfaces. Mechanical machining is the main material removal process for the vast majority of aerospace components. However, many problems exist, including severe and rapid tool wear, low machining efficiency, and poor surface integrity. Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies (vibration, laser, electricity, etc) to improve the machinability of local materials and decrease the burden of mechanical machining. This provides a feasible and promising method to improve the material removal rate and surface quality, reduce process forces, and prolong tool life. However, systematic reviews of this technology are lacking with respect to the current research status and development direction. This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community. In addition, this paper focuses on the processing principles, material responses under nontraditional energy, resultant forces and temperatures, material removal mechanisms, and applications of these processes, including vibration-, laser-, electric-, magnetic-, chemical-, advanced coolant-, and hybrid nontraditional energy-assisted mechanical machining. Finally, a comprehensive summary of the principles, advantages, and limitations of each hybrid process is provided, and future perspectives on forward design, device development, and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(230) PDF Downloads(43) Citation(0)

Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community: a comparative analysis

doi: 10.1088/2631-7990/ad16d6
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China

Abstract: 

The aerospace community widely uses difficult-to-cut materials, such as titanium alloys, high-temperature alloys, metal/ceramic/polymer matrix composites, hard and brittle materials, and geometrically complex components, such as thin-walled structures, microchannels, and complex surfaces. Mechanical machining is the main material removal process for the vast majority of aerospace components. However, many problems exist, including severe and rapid tool wear, low machining efficiency, and poor surface integrity. Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies (vibration, laser, electricity, etc) to improve the machinability of local materials and decrease the burden of mechanical machining. This provides a feasible and promising method to improve the material removal rate and surface quality, reduce process forces, and prolong tool life. However, systematic reviews of this technology are lacking with respect to the current research status and development direction. This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community. In addition, this paper focuses on the processing principles, material responses under nontraditional energy, resultant forces and temperatures, material removal mechanisms, and applications of these processes, including vibration-, laser-, electric-, magnetic-, chemical-, advanced coolant-, and hybrid nontraditional energy-assisted mechanical machining. Finally, a comprehensive summary of the principles, advantages, and limitations of each hybrid process is provided, and future perspectives on forward design, device development, and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.

Reference (324)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return