• Open access free of charge
    • Free and high quality figure editing
    • Free widest possible global promotion for your research
Volume 5 Issue 4
Jul.  2023
Article Contents

Mu Y B, Chu Y Q, Pan L M, Wu B K, Zou L F, Han M S, Zhao T S, Zeng L. 2023. 3D printing critical materials for rechargeable batteries: from materials, design and optimization strategies to applications. Int. J. Extrem. Manuf. 5 042008.
Citation: Mu Y B, Chu Y Q, Pan L M, Wu B K, Zou L F, Han M S, Zhao T S, Zeng L. 2023. 3D printing critical materials for rechargeable batteries: from materials, design and optimization strategies to applications. Int. J. Extrem. Manuf. 042008.

3D printing critical materials for rechargeable batteries: from materials, design and optimization strategies to applications


doi: 10.1088/2631-7990/acf172
More Information
  • Publish Date: 2023-07-26
  • Three-dimensional (3D) printing, an additive manufacturing technique, is widely employed for the fabrication of various electrochemical energy storage devices (EESDs), such as batteries and supercapacitors, ranging from nanoscale to macroscale. This technique offers excellent manufacturing flexibility, geometric designability, cost-effectiveness, and eco-friendliness. Recent studies have focused on the utilization of 3D-printed critical materials for EESDs, which have demonstrated remarkable electrochemical performances, including high energy densities and rate capabilities, attributed to improved ion/electron transport abilities and fast kinetics. However, there is a lack of comprehensive reviews summarizing and discussing the recent advancements in the structural design and application of 3D-printed critical materials for EESDs, particularly rechargeable batteries. In this review, we primarily concentrate on the current progress in 3D printing (3DP) critical materials for emerging batteries. We commence by outlining the key characteristics of major 3DP methods employed for fabricating EESDs, encompassing design principles, materials selection, and optimization strategies. Subsequently, we summarize the recent advancements in 3D-printed critical materials (anode, cathode, electrolyte, separator, and current collector) for secondary batteries, including conventional Li-ion (LIBs), Na-ion (SIBs), K-ion (KIBs) batteries, as well as Li/Na/K/Zn metal batteries, Zn-air batteries, and Ni–Fe batteries. Within these sections, we discuss the 3DP precursor, design principles of 3D structures, and working mechanisms of the electrodes. Finally, we address the major challenges and potential applications in the development of 3D-printed critical materials for rechargeable batteries.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(165) PDF Downloads(22) Citation(0)

3D printing critical materials for rechargeable batteries: from materials, design and optimization strategies to applications

doi: 10.1088/2631-7990/acf172
  • 1 Shenzhen Key Laboratory of Advanced Energy Storage, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China;
  • 2 SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China;
  • 3 Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China

Abstract: 

Three-dimensional (3D) printing, an additive manufacturing technique, is widely employed for the fabrication of various electrochemical energy storage devices (EESDs), such as batteries and supercapacitors, ranging from nanoscale to macroscale. This technique offers excellent manufacturing flexibility, geometric designability, cost-effectiveness, and eco-friendliness. Recent studies have focused on the utilization of 3D-printed critical materials for EESDs, which have demonstrated remarkable electrochemical performances, including high energy densities and rate capabilities, attributed to improved ion/electron transport abilities and fast kinetics. However, there is a lack of comprehensive reviews summarizing and discussing the recent advancements in the structural design and application of 3D-printed critical materials for EESDs, particularly rechargeable batteries. In this review, we primarily concentrate on the current progress in 3D printing (3DP) critical materials for emerging batteries. We commence by outlining the key characteristics of major 3DP methods employed for fabricating EESDs, encompassing design principles, materials selection, and optimization strategies. Subsequently, we summarize the recent advancements in 3D-printed critical materials (anode, cathode, electrolyte, separator, and current collector) for secondary batteries, including conventional Li-ion (LIBs), Na-ion (SIBs), K-ion (KIBs) batteries, as well as Li/Na/K/Zn metal batteries, Zn-air batteries, and Ni–Fe batteries. Within these sections, we discuss the 3DP precursor, design principles of 3D structures, and working mechanisms of the electrodes. Finally, we address the major challenges and potential applications in the development of 3D-printed critical materials for rechargeable batteries.

Reference (166)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return