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Abstract
Multi-source errors, as critical obstacles limiting the accuracy retention and machining
performance of machine tools, hold fundamental and strategic significance for achieving
high-precision, high-efficiency, and high-reliability machining in modern manufacturing
systems. However, these errors typically exhibit complex characteristics such as strong
coupling, time-variance, and nonlinearity, which challenge traditional methods of error
identification, modeling, and compensation in terms of adaptability, real-time capability, and
integration. Therefore, it is imperative to establish a systematic and intelligent multi-source
error control framework. Firstly, this work systematically reviews typical error sources and their
evolution mechanisms, evaluates multi-scale detection technologies including laser
interferometry, double ball-bar systems, multi-sensor fusion, and vision-based systems, and
constructs an intelligent error identification and evaluation framework. Next, it reviews classical
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modeling methods such as homogeneous transformation matrices, screw theory, thermal
equilibrium models, finite element analysis, and modal analysis, compares physical modeling,
data-driven, and hybrid modeling strategies, and develops an integrated multi-source error
modeling architecture centered on digital twin technology and artificial intelligence.
Furthermore, key technologies, including geometric error mapping and real-time compensation,
online thermal error prediction and active temperature control, dynamic error suppression, and
adaptive control, are summarized. A multi-level integrated error compensation architecture is
proposed by combining physical models, data models, and cyber-physical synchronization. This
architecture encompasses core processes such as error traceability and decoupling, dynamic
prediction, real-time compensation, and closed-loop optimization, emphasizing engineering
implementation mechanisms based on cyber-physical collaboration, multi-physics coupling, and
multi-scale fusion, thereby effectively enhancing accuracy stability and control robustness under
complex operating conditions. Finally, frontier challenges such as constructing high-fidelity
coupled models from heterogeneous multi-source data, edge–cloud collaborative control, and
cross-platform interoperability are discussed. The application prospects of multi-source error
evaluation are also envisioned, providing theoretical foundations and technical support for the
precise management and optimization of the entire lifecycle accuracy of machine tools.

Keywords: multi-source error evaluation, error coupling, integrated error modeling,
traceability and decoupling, hybrid prediction, closed-loop error compensation

1. Introduction

Machine tools, as core equipment in manufacturing, have
their precision directly determining product quality, produc-
tion efficiency, equipment operational stability, and overall
system performance. Various errors not only reduce machin-
ing accuracy but also lead to increased energy consumption,
resource waste, and prolonged production cycles, severely
limiting system optimization and competitiveness. Although
CNC and automation technologies have made significant
advances, challenges remain in dynamic error capture, real-
time monitoring, and fast computation. In particular, the lack
of efficient multi-source error testing and evaluation technolo-
gies has become a major bottleneck for maintaining machine
tool accuracy. Therefore, achieving efficient error identifica-
tion, modeling, and suppression has become a key research
focus in the intelligent manufacturing and high-end equipment
sectors.

To comprehensively understand current research trends,
a bibliometric analysis was conducted using the Web of
Science database (as of 31 December 2024), focusing on the
keywords “machine tool”, “error”, and “precision”, and using
VOSviewer software. The results show that current research
hotspots concentrate on areas such as error classification,
measurement technologies, modeling methods, error source
tracing and decoupling analysis, prediction mechanisms, and
compensation control strategies, as shown in Figure 1.

Further literature retrieval and clustering analysis based
on “machine tool error” and its subfields reveal that stud-
ies mainly focus on improving error identification and detec-
tion technologies, evolving modeling theories, and optimizing
compensation strategies, as shown in Figure 2.

Machine tool errors have complex causes, including geo-
metric errors, thermal errors, cutting force errors, dynamic
errors, mechanical wear, and control system errors, as shown

in Figure 3. Traditional evaluation methods, primarily based
on experimental analysis and theoretical modeling, such as
laser interferometry[1] and ball-bar tests[2], perform well
under static conditions but fail to meet the requirements of
multi-axis linkage, complex working conditions, and dynamic
responses[3]. Theoretical modeling methods, such as cut-
ting force models[4,5] and finite element analysis[6,7], offer
scalability and low cost[8,9], but under high-speed dynamic
machining environments, they often lack modeling accur-
acy and suffer from response delays, making it difficult
to meet the demands for real-time error identification and
prediction[10]. Traditional compensation strategies rely on
static pre-calibration and offline data, lacking the rapid adapt-
ability to thermal loads, cutting forces, and servo dynamics.

Multi-source errors originate from dynamic interactions
among various internal and external factors during machining.
Geometric errors define the baseline static precision, thermal
expansion causes time-varying structural deformation, cut-
ting forces induce tool deflection and machine compliance
variation, and dynamic vibrations create transient displace-
ment errors. In high-speed multi-axis machining, these errors
exhibit significant nonlinear coupling and complex accumu-
lation, severely limiting tolerance precision in extreme manu-
facturing processes, particularly in fields such as aero-engine
impeller manufacturing, semiconductor wafer stepping, preci-
sion optics, and large mold machining.

To overcome the limitations of traditional methods, emer-
ging technologies such as artificial intelligence (AI), digital
twin (DT), and big data analytics have enhanced adaptive error
management under complex multi-axis machining conditions
through virtual-physical fusion, dynamic evolution, and intel-
ligent optimization capabilities[12−20]. Digital twin technolo-
gies achieve high-fidelity mapping and dynamic updates of
error states, enabling dynamic tracking and multi-dimensional
coupling modeling of errors[21−25], and supporting integrated
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Figure 1. Comprehensive bibliometric analysis of machine tool errors.

state perception, mechanistic modeling, and closed-loop
control[26,27]. AI technologies, based on deep learning and
knowledge graphs, enhance robustness in error identifica-
tion and intelligence in prediction[28]. Current research is
gradually shifting from qualitative analysis of single error
types to systemic studies focusing on multi-source informa-
tion fusion, cross-scale modeling, and real-time closed-loop
control[29−31], aiming for efficient perception, modeling, eval-
uation, and control of multi-source errors[32,33], as illustrated
in Figure 4. This has become a central issue for improving
machine tool precision retention, particularly in multi-axis
linkage and intelligent manufacturing scenarios.

Compared with traditional approaches, emerging tech-
nologies demonstrate significant advantages across multiple
stages, including error identification, modeling, source tracing
and decoupling, and compensation, as shown in Table 1.

Cutting-edge technological breakthroughs and advances in
real-time adaptive control support effective detection and con-
trol across various error types, particularly excelling in real-
time monitoring, error prediction, compensation, and optimiz-
ation, further underscoring the need for system-level solutions,
as shown in Table 2.

To address these needs, this paper adopts a “divide and
conquer” and “prioritize the major without neglecting the
minor” strategy, and conducts a systematic review of meth-
odologies and applications for evaluating multi-source errors
in machine tools, as shown in Figure 5. Compared with
recent reviews[50,51], this work adopts a multi-level, closed-
loop system perspective and innovatively integrates multi-
source error identification, integrated error modeling, source
tracing and decoupling, adaptive prediction, and intelligent
compensation. It constructs a closed-loop intelligent control

system of “perception–modeling–analysis–feedback optimiz-
ation”, where the perception layer captures heterogeneous
multi-source information, such as thermal, cutting force, and
vibration data in real time, and employs data preprocessing,
fusion, and feature extraction to supply high-quality inputs
for modeling. The modeling layer uses multibody dynam-
ics, finite element methods, and machine learning to build
physics-driven, data-driven, and hybrid error models, achiev-
ing digital representation and evolution of error behaviors.
The analysis layer conducts error state evaluation and trend
prediction based on real-time monitoring and error evol-
ution, generating optimal control strategies. The feedback
optimization layer dynamically adjusts machine tool opera-
tion status and performance through servo tuning and online
compensation, forming a cyber-physical collaborative closed-
loop control system. This framework realizes full-chain intel-
ligent management ofmulti-source errors. It conducts in-depth
analysis of nonlinear error coupling mechanisms, emphas-
izes digital twin–AI integrated modeling paradigms, explores
key challenges of real-time adaptive modeling, and estab-
lishes quantitative evaluation metrics to enhance comparab-
ility and industrial adaptability. It also summarizes error tra-
cing and decoupling methods, high-fidelity prediction, and
self-optimized compensation under high-dynamic and com-
plex conditions. Finally, it envisions an autonomous adaptive
error management system for intelligent manufacturing, pro-
moting systematic, real-time, and standardized advancement
of machine tool precision retention.

The remaining part of this article is structured as follows:
chapter 2 reviews the sources, classification, and influencing
mechanisms of errors; chapter 3 compares the advantages
and disadvantages of traditional and intelligent systems in

3



Int. J. Extrem. Manuf. 8 (2026) 022002
Multi-source errors evaluation of machine tools...

Sun J et al.

Liu, Hui
8%

Ma, Chi
8%

Zhu, Limin
7.8%

Yang, Yun
8.2%

Wang, Hao
8.6% Zhang, Yu

10.1%
Wang, Yang
10.3%

Liu, Kuo
10.9%

Ding, Han
11.1%

Li,Yu
17%

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
0

700

1 400

2 100

China
USA
India
England
Germany
Canada
Spain

Shanghai Jiao Tong University
Huazhong University of Science and Technology
Xi’an Jiaotong University
Chinese Academy of Sciences
Indian Institute of Technology System IITSystem
Harbin Institute of Technology
Dalian University of Technology
Tsinghua University
Chongqing University

         Online monitoring 
phase: 
IoT for real-time monitoring.
Data-driven methods 
(neural networks, SVM).
Adaptive compensation, 
predictive maintenance.

Abdulshahed, Ali M
Li, Yang
Gao, Wei
Wu, Zheng
Zhang, Zhao
Zeng, Shuang
Russo, Matteo
Niu, Peng

Highly cited papers: 106       Hot papers: 7

       Computer aided 
stage: 
CMM systems, high 
efficiency.
Finite element analysis.
Intelligent compensation 
algorithms (PID).

390 424
546

689

837 1 070
1 257

1 552
1 665

1 937

Database: Web of Science 
Search topics: machine tool error OR classification of machine tool 
errors OR measurement of machine tool errors OR modeling of machine
tool errors OR error tracing and decoupling of machine tools OR  
prediction of machine  tool errors OR compensation of machine tool errors
Time frame: the past decade

       Initial stage:
Hand tools (calipers, 
micrometers), low 
accuracy. 
Experience-based. 
Mechanical adjustment 
(gaskets, screws).

       Laser measurement 
stage: 
Laser interferometers, 
high precision. 
Homogeneous 
coordinate method.
CNC systems, error 
compensation (reverse 
clearance, pitch).

       Electronic 
measurement stage: 
Electronic equipment 
(electronic micrometer, 
inductance micrometer), 
improved accuracy. 
Kinematic models for 
multi-axis errors.
NC machine tools, simple 
software compensation.

       Multi-axis error 
measurement stage: 
Multi-axis 
measurement tech (ball 
meter, laser tracker).
Dynamic factors 
(thermal, force errors).
Dynamic compensation 
in real time.

       Mechanical 
measurement stage: 
Mechanical instruments 
(dial indicator, level meter), 
improved accuracy. 
Simple geometric models. 
Structural adjustment (guide 
rails, lead screws), manual.

       Intelligent stage: 
Multi-sensor fusion, high 
precision sensors (quantum 
sensors). 
AI and machine learning for
complex errors.
AI-based dynamic
compensation, automated 
calibration (machine vision).

1

2

3

4

5

6

7

8

9

10

1900s

1940s

1980s

1990s

2000s

2020s 2030s
2010s

1

2

3

4

5

6
7 8 9 10

1960s

Training stage Testing stage

OutputsInputs OutputsInputs

Post-hoc Explanation

Post-hoc Explanation
Explain

Inputs Outputs OutputsInputs

         Future Outlook
Quantum measurement, 
ultra-high precision 
sensors.
Quantum computing and AI 
for ultra-complex models.
Fully automatic adaptive 
systems.

        Digital twin stage: 
Digital twin technology
for virtual models.
Real-time machine 
state reflection.
Remote calibration, less 
manual intervention.

Key countries Key institutions

Bed monitor

Spindle 
monitor

Column 
monitor
Column 
monitor

Operating condition information

Spindle 
monitor

Key authors

C
ontributions

Artificial
intelligence

Machine
learning

Deep
learning

Figure 2. The development process of the core research on machine tool errors.

error identification and assessment; chapter 4 focuses on error
modeling methods, covering physical, data, and hybrid mod-
eling; chapter 5 explores error traceability and decoupling
strategies; chapter 6 reviews advanced error prediction tech-
nologies; chapter 7 summarizes real-time error compensation
strategies and constructs a multi-level integrated compensa-
tion system; chapter 8 summarizes the entire article; chapter 9
looks forward to future research directions.

2. Source and classification

2.1. Geometric error

Geometric errors are critical factors affecting machine tool
machining accuracy and part quality, widely present in various
precision manufacturing scenarios. They stem from multiple
mechanisms, including machine structure, thermal deforma-
tion, control system errors, and component wear, directly lead-
ing to deviations in machining dimensions, shape, and sur-
face quality. Therefore, a deep understanding of the formation

mechanisms and influence paths of geometric errors is essen-
tial for improving manufacturing precision and machine tool
performance.

Firstly, one of the main sources of geometric errors is
the inherent inaccuracy in machine tool mechanical struc-
tures, especially positioning errors of key components such
as the bed, column, and spindle during manufacturing and
assembly[55]. Even with high-precision manufacturing pro-
cesses, structural errors are inevitable due to material property
differences and manufacturing tolerances. For instance, mis-
alignment of guideways often causes linear motion deviations,
affecting the accuracy of machining paths[56].

Thermal effects are also a major cause of geometric errors.
During operation, friction, cutting heat, and motor heating
lead to expansion or contraction of key components, res-
ulting in structural deformation and posture shifts[30]. For
example, spindle elongation due to thermal expansion can
cause tool deviation from the programmed path, thereby
affecting machining accuracy[57]. ISO 230 standards propose
that geometric accuracy evaluation should include indicators
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Figure 3. Main contents and methods of multi-source error research on machine tools. Reprinted from[11], Copyright (2013), with permission
from Elsevier.

such as positioning error, straightness error, and angular
error[58]. As thermal errors dynamically evolve with load and
environmental changes, obtaining accurate patterns of their
variation becomes the core challenge in thermal characteristic
evaluation and compensation design.

As usage time increases, wear of machine tool compon-
ents also induces geometric errors. For instance, prolonged
operation of actuating components like bearings, lead screws,
and gears results in increased backlash and reduced motion
accuracy, leading to repeated positioning errors and traject-
ory deviation[59]. Particularly under prolonged maintenance-
free or heavy-load conditions, wear errors accumulate, sig-
nificantly affecting the machine tool’s long-term precision
retention capability[60,61].

Additionally, the CNC control system itself may be a source
of geometric errors. Although CNC aims to achieve high pre-
cision and repeatability, errors in control algorithms, interpol-
ation strategies, or feedback signals can still cause deviations
in machining paths[62]. For example, improperly set position
loop gain or signal distortion from encoders can more easily
lead to contour errors in high-speed machining scenarios[63].

Geometric errors can have far-reaching impacts on part
quality and functionality. For instance, squareness errors
in rotary axes of five-axis machine tools can result in
nonlinear contour deviations, affecting assembly accuracy
and operational reliability[64]. Furthermore, geometric errors
alter cutting force distribution, leading to deteriorated sur-
face roughness, increased tool wear, and residual stress
concentration[65,66]. In high-end manufacturing fields such as
aerospace and medical devices, even tiny errors can cause sys-
temic failure or safety risks[67−69].

To effectively suppress geometric errors, machine tool
manufacturers continuously optimize structural design and

assembly processes by adopting technologies such as pre-
loaded bearings, tensioned lead screws, and high-stiffness
guideways to reduce looseness and motion gaps[60]. At the
same time, CNC systems incorporate error compensation
algorithms to correct tool paths in real time based on modeling
results, such as adjusting control parameters through online
learning mechanisms or optimizing servo system response via
multi-machine data sharing[70,71]. In addition, regular main-
tenance and precision calibration remain essential for long-
term accuracy assurance[68].

In recent years, real-time monitoring systems integrat-
ing sensors and feedback control have become increasingly
popular. These systems can dynamically perceive machine
tool operating status and adaptively correct machining paths,
thereby improving overall system accuracy and robustness.
In the future, geometric error control will continue to focus
on intelligent compensation technologies, advanced mater-
ial applications, and innovations in machine tool structure to
achieve higher quality and greater manufacturing consistency.

2.2. Thermal error

In modern intelligent manufacturing systems, controlling
thermal errors in machine tools has become a research hot-
spot in the field of precision machining. As one of the primary
factors affecting machining accuracy and product quality,
thermal deformation not only degrades surface quality but may
also cause instability in the machining system. Studies show
that thermal errors account for as much as 60% to 75% of total
machining error[72]. Therefore, minimizing thermal sources
during the design phase and suppressing thermally induced
errors during operation are key strategies to ensure precision
retention and stability in precision machine tools.
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Figure 4. Methodology and application in multi-source error evaluation of machine tools.

2.2.1. The main cause of thermal error. J. Bryan’s pioneer-
ing work first systematically revealed the impact of machine
tool thermal deformation on machining accuracy and iden-
tified spindle thermal expansion as one of the main causes
of geometric errors[73]. Based on the nature of heat sources,
thermal errors in machine tools mainly originate from external
heat sources, the spindle, the feed system, and cutting heat.
These act on machine tool structures via conduction, convec-
tion, and radiation, leading to uneven temperature field distri-
bution and subsequent changes in the relative position between
tool and workpiece, as shown in Figure 6.

As shown in Figure 6(a), the fluctuation of environmental
temperature causes changes in the overall thermal field of the
machine tool structure, resulting in thermal deformation of the
structural components. This is the main external factor affect-
ing the thermal error. Therefore, precision machine tools typ-
ically operate in temperature-controlled environments. Some
studies have built mapping models between environmental
temperature variation and thermal deformation using thermal
error transfer functions and frequency-domain analysis[76], or
established multivariate regression-based forecasting frame-
works combining Fourier series and time-series modeling[77].

Moreover, thermal radiation from hydraulic stations and elec-
trical cabinets can cause local heating, which can be effectively
isolated using thermal insulation panels[78].

As shown in Figure 6(b), as the core component of the
cutting system, the main spindle of the machine tool gener-
ates a large amount of heat when operating at high speed,
which is prone to causing thermal elongation and thereby
lead to processing errors. Research mainly focuses on mater-
ial selection and cooling system optimization to suppress
spindle thermal errors. New materials like carbon fiber rein-
forced polymer (CFRP) and glass ceramics offer excellent
thermal stability, effectively reducing thermal deformation of
spindles[79,80], although they may compromise spindle stiff-
ness and dynamic characteristics. Therefore, cooling system
design has become the mainstream strategy for controlling
spindle thermal error[81].

Low-load spindles often use air convection cooling[82],
while high-speed, high-torque spindles tend to adopt water or
oil cooling systems. Recently, researchers have improved heat
exchange efficiency by optimizing the cross-section shape,
curvature, and roughness of cooling channels[83]. Model-
driven cooling control strategies based on ambient temperature

6



Int. J. Extrem. Manuf. 8 (2026) 022002
Multi-source errors evaluation of machine tools...

Sun J et al.

Table 1. Comparison between traditional methods and intelligent systems in machine tool error evaluation process.

Research content Key indicators Characteristics of traditional methods Advantages of intelligent systems References

Error identification Identification accuracy,
identification speed

Limited accuracy, delayed
response

Real-time identification,
high accuracy, strong
dynamic response

[32]

Error modeling Model fidelity,
visualization

Simplified modeling, lack
of intuitiveness

Driven by real-time
feedback, high modeling
accuracy, supports visual
analysis

[33−35]

Error traceability and
decoupling

Traceability, decoupling
accuracy

Static analysis,
experience-dependent

Supports dynamic tracing
under complex conditions
with high-accuracy
decoupling

[36−39]

Error prediction Prediction accuracy,
prediction speed

Delayed prediction, poor
dynamic adaptability

Real-time prediction,
strong interactivity, good
adaptability

[40−42]

Error compensation Compensation
reliability,
compensation accuracy

Simple mechanism, poor
adaptability

Closed-loop feedback
compensation, strong
adaptability, high precision

[43,44]

Table 2. Comparison between traditional methods and intelligent systems for typical error types.

Error type Characteristics of traditional methods Advantages of intelligent systems References

Geometric error Offline measurement after
processing, limited error source
analysis

Digital twin comparison analysis of
geometric error mechanisms,
higher modeling accuracy

[44]

Thermal error Only analyzes the single heat
source effect, difficult to measure

Multi-source heat simulation and
feedback compensation, improved
thermal control capability

[37−40,45]

Cutting force error Static measurement and
compensation, difficult to handle
dynamic conditions

Real-time monitoring and
modeling, improved processing
adaptability and compensation
accuracy

[46,47]

Dynamic error Dynamic signals analyzed after
experiments, no real-time
adjustment

Dynamic monitoring and real-time
compensation, improved processing
stability and quality

[42,48,49]

tracking can further improve response speed and accuracy of
the cooling system[84−86].

As shown in Figure 6(c), the components of the feed sys-
tem, such as the servo motor, lead screw, guide rail, and bear-
ing generate heat during operation, causing thermal deform-
ation of the structure and thereby affecting the positioning
accuracy of the tool. Air cooling and liquid cooling are com-
mon thermal management methods for lead screws; the former
suits high-speed, low-load scenarios, while the latter is bet-
ter for high-load machining[87,88]. Thermal error from lead
screws can be effectively managed using heat transfer mod-
els combined with adaptive fuzzy PID control strategies[89].
Compared to spindle thermal management, research on feed
system thermal errors is relatively lacking. More work is
needed to investigate the relationship between thermal source
characteristics and structural precision.

As shown in Figure 6(d), the high-speed friction in the cut-
ting zone generates a large amount of heat, which affects the
stability of the process system and the lifespan of the cut-
ting tool. Cutting heat management strategies include external
cooling, internal cooling, and hybrid cooling[90,91]. External
cooling sprays coolant or low-temperature gas to suppress
temperature rise in the machining zone[92,93]; internal cooling
channels within the tool directly cool the cutting point[94−96];
hybrid cooling combines the strengths of both, particularly
suitable for ultraprecision machining scenarios, improving
both cooling efficiency and tool stability[97,98].

2.2.2. Types and mechanisms of thermal errors. Thermal
errors can be categorized into four types: thermal deform-
ation errors (structural deformation caused by a single heat
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Figure 5. Application of intelligent system in machine tool errors[52−54].

source), thermal drift errors (system-wide offset due to asym-
metric cooling), thermal disturbance errors (random disturb-
ances from external radiation or internal coupled heat sources),
and thermal stability errors (instabilities due to long-term
thermal equilibrium or self-excited oscillation)[99−101].

Thermal errors essentially arise from the uneven distri-
bution of internal heat sources and the time-varying nature
of thermal properties of materials. Under thermomechan-
ical coupling, the machine tool’s internal temperature and
stress fields become non-uniform, leading to form and pos-
itional errors such as guideway displacement and spindle
runout[102−104]. Thus, accurately establishing the mapping
between temperature fields and thermal deformation, and
building efficient thermal error prediction models, are central
to thermal error control.

Currently, relevant research mainly focuses on two dir-
ections: first, based on thermal characteristic modeling

and sensitivity analysis, to identify key heat sources and
quantify thermal influence paths[105]; second, to construct
multi-physics coupledmodels for high-precision simulation of
machine tool thermal behavior and to develop active thermal
error control strategies[89–106]. Multiphysics modeling is key
to achieving submicron- and even nanometer-level precision
control[107], and remains a technical bottleneck in high-end
equipment manufacturing. A typical method is to use finite
element analysis (FEA) to build coupled models of struc-
tural temperature and thermal deformation fields, and integ-
rate sensor arrays to achieve real-time thermal-displacement
monitoring and dynamic mapping[108].

On this basis, researchers have introduced intelligent
algorithms such asModel Predictive Control (MPC), Adaptive
Control, and Reinforcement Learning to enhance the preci-
sion, response speed, and robustness of online thermal error
compensation[109,110]. Using digital twin platforms, it is also
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possible to implement thermal design simulation, strategy
testing, and parameter optimization in virtual space, forming
a “modeling–simulation–feedback–optimization” closed-loop
system to support thermal error management across the
machine tool lifecycle[111].

2.3. Cutting force error

Cutting force, a direct manifestation of the interaction between
tool and workpiece, not only determines material removal
efficiency but also significantly affects dimensional accuracy,
form error, and surface quality. In scenarios with complex
structures or insufficient rigidity, it can easily induce machin-
ing errors. Cutting forces are typically divided into tangen-
tial, radial, and axial components: tangential force influences
shear deformation and energy consumption, and determines
tool stability; radial force acts perpendicular to the machin-
ing axis, causing tool deflection and structural vibration, redu-
cing dimensional accuracy and surface integrity; axial force
acts along the spindle direction, significantly impacting tool
wear and system rigidity balance[112].

In actual machining, cutting force is influenced by multiple
coupled factors such as workpiece material, tool geometry and
material, and cutting parameters (speed, feed, depth)[113]. For
example, harder or low-thermal-conductivity materials often
result in higher cutting forces, exacerbating tool deflection
and thermal deformation; tool wear alters cutting force dis-
tribution, further amplifying errors[114−116]. When the tool
overhang is long or system rigidity is insufficient, deflection
due to cutting force becomes more pronounced, especially in
thin-walled structures ormicro-machining, where dimensional
deviations are non-negligible[117]. In thin-wall aerospace com-
ponent milling, cutting force fluctuations cause static tool

deflection and dynamic workpiece vibration, leading to wall
thickness variation and roundness deviation that often exceed
assembly tolerances[118].

Moreover, instabilities during cutting—such as self-excited
chatter—are a major source of error accumulation. Chatter is
characterized by “positive feedback”; once initiated, it causes
persistent cutting force fluctuations, surface degradation, and
shortened tool life[119,120]. Simultaneously, cutting friction
and plastic deformation generate significant heat, causing
localized thermal expansion of the tool and machine, indu-
cing positioning errors—especially pronounced in high-speed
machining[121]. The superposition of thermal deformation and
force-induced deflection increases thermo-mechanical coup-
ling instability, complicating error modeling and control.

Therefore, effective control strategies for cutting force
errors should include multi-level coordinated measures such
as cutting parameter optimization, tool design rationalization,
enhancement of system rigidity, and thermo-mechanical coup-
ling compensation mechanisms, to ensure machining stability
and consistency at high precision.

2.4. Dynamic error

Dynamic errors are key factors affecting quality and consist-
ency in high-speed precision machining, primarily originating
from structural vibration, inertia effects, servo lag, and system
compliance. Essentially, these are transient deviations arising
in machining systems under rapid responses and coordin-
ated multi-axis movements, exhibiting strong nonlinearity and
time-varying characteristics.

Among them, structural vibration and chatter are particu-
larly prominent. The former often results from uneven motion
of components or external disturbances; if not effectively
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suppressed, the disturbance energy propagates through the
structure to the tool and workpiece, causing dimensional fluc-
tuations and increased surface roughness. The latter, a typical
self-excited vibration phenomenon, arises from unstable coup-
ling between cutting and structural dynamics, usually mani-
festing as sharp noise and characteristic surface waviness,
which not only damages surface integrity but may induce local
stress concentration and reduce fatigue life[122,123].

Machine tool structural rigidity plays a crucial role in
dynamic error control. If the bed, spindle, or connecting parts
lack rigidity, deformation and oscillation occur, exacerbat-
ing tool deflection and unstable machining[124]. Vibration-
induced alternating loads also accelerate tool wear, shorten
tool life, and further affect machining efficiency and product
accuracy[125,126].

Additionally, the material properties of the workpiece and
tool significantly influence chatter sensitivity. Softer mater-
ials are prone to inducing vibration during machining and
require optimized cutting parameters for suppression[122];
while harder materials exhibit better resistance to vibration but
heightened sensitivity to tool wear, demanding tools with high
rigidity and wear resistance[123–127].

Servo tracking error is a critical component of dynamic
errors. The instantaneous deviation between the commanded
trajectory and the actual position directly affects contour
accuracy, especially in high-speed multi-axis machining scen-
arios, where it is particularly sensitive. This type of error
is significantly influenced by the servo system bandwidth,
control parameter matching, and synchronization perform-
ance among axes. Recent studies have emphasized the import-
ance of optimizing servo-dynamic matching. For example,
Ramesh et al.[128] pointed out that inconsistent responses
among servo axes are the fundamental cause of endpoint
errors; Kong et al.[129] proposed a commercial servo para-
meter tuning method that requires no secondary develop-
ment to achieve matching optimization in five-axis systems;
Guan et al.[130] further established a unified Servo Dynamic
Matching Degree (SDMD) index system to quantitatively
describe the dynamic response consistency between transla-
tional and rotational axes, which is used for collaborative
optimization design in complex five-axis systems.

In terms of control strategies, intelligent servo control
and active vibration suppression systems are widely used.
Sensor-based state monitoring combined with damper feed-
back enables real-time vibration identification and suppres-
sion; variable-speed drives and adaptive control strategies
can adjust spindle speed dynamically to reduce chatter risk.
With improvements in sensor integration and signal pro-
cessing capabilities, dynamic prediction and preventive con-
trol have become key to enhancing system stability and
product consistency[125].

In summary, effectively suppressing dynamic errors
requires full-chain coordinated optimization ranging from
structural design and material selection to servo control.
Systematic dynamic management not only improves machin-
ing accuracy and surface quality but also extends tool life and
reduces manufacturing costs.

2.5. Other sources of error

Beyond the main error types mentioned, machine tool operat-
ing accuracy is also affected by factors like wear, backlash, and
control system errors[131]. Although these latent errors may
not manifest early in machining, they gradually accumulate
over time and pose significant threats to equipment reliability
and manufacturing consistency.

Component wear is a primary contributor to long-term
precision degradation. Wear caused by friction, fatigue, and
environmental corrosion can change the dimensions and sur-
face state of critical moving parts, reducing dynamic response
performance[132]. Regular maintenance and timely replace-
ment of worn components can effectively suppress this type
of error accumulation[133].

Backlash errors commonly occur in transmission struc-
tures such as lead screw and gear pairs; direction reversal pro-
cesses introduce play that severely impacts positioning accur-
acy, particularly under high-frequency, high-speed reversal
conditions[133]. Preloaded designs and backlash compensation
algorithms are common solutions[134,135].

Control system errors stem from delays or deviations in
sensing, processing, and execution stages. They may involve
hardware faults (e.g., sensor failures, servo anomalies)[136],
software bugs (e.g., trajectory planning errors, control logic
mistakes)[137], and environmental interference (e.g., elec-
tromagnetic noise, power fluctuations, thermal drift)[134].
Enhancing control system robustness typically requires fault-
tolerant control, calibration mechanisms, and electromagnetic
shielding[138].

It is important to note that these error sources often interact
rather than exist independently. For example, thermal expan-
sion can affect geometric structure and system rigidity, which
in turn alters dynamic response characteristics; heat generated
by cutting force not only induces thermal deformation but also
affects tool–workpiece contact; structural wear can increase
backlash, further affecting servo feedback accuracy and indu-
cing control errors[139,140].

Such multi-source coupling effects form complex nonlin-
ear dynamic systems, making it difficult for traditional single-
source error compensationmethods to cope effectively. Recent
studies have shown that constructing an integrated modeling
framework for multi-source collaboration is key to achieving
effective error control. For example, multi-source error identi-
fication and compensation strategies for five-axis flank milling
scenarios[141], as well as thermal error prediction frameworks
that integrate multi-source heterogeneous information, both
demonstrate the urgent need for coupled modeling[142].

Future development should focus on system modeling and
state recognition across multiple physics domains and time-
space scales, combined with integrated health management
systems to enable real-time monitoring and predictive control
of error sources[143,144]. By integrating data-driven modeling
with knowledge inferencemechanisms, error management can
evolve from ‘static prevention’ toward ‘dynamic intervention’,
thus ensuring long-term precision retention in machine tool
operation.
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3. Identification and evaluation

Rapid and accurate identification of machine tool errors is
the foundation for high-precision manufacturing and intelli-
gent compensation control. It directly influences error model-
ing, prediction, and dynamic adjustment capabilities. Current
methods fall into traditional measurement and intelligent-
system-based modern evaluation, leading toward a system
targeting multi-source errors, high-resolution sensing, and
dynamic feedback control to support high-quality modeling
and compensation.

3.1. Traditional methods

Based on measurement mode, traditional methods include dir-
ect and indirect measurement[145]. Direct methods use spe-
cialized instruments to measure errors with high accuracy,
but are often environment-dependent. Indirect methods infer
error parameters from axis trajectories, workpiece geometry,
or motion characteristics—suitable for dynamic error evalu-
ation in complex conditions[146].

3.1.1. Direct measurement methods. Direct measurement
methods refer to the independent measurement of individual
error components (such as positioning error, straightness
error, and angular error) of each machine tool axis using
high-precision metrological instruments, in accordance with
the ISO 230-1 standard[147]. These methods are typically

applied during machine tool assembly, alignment, or final
accuracy acceptance testing, offering high measurement res-
olution and traceability. Representative direct measurement
techniques include laser interferometry, autocollimators and
levels, optical metrology methods, and machine vision inspec-
tion, as illustrated in Figure 7.

As shown in Figure 7(a), laser interferometry is widely
used to evaluate the linear displacement, straightness, per-
pendicularity, parallelism, and angular errors of machine
tools[151,152]. A typical instrument is the laser interfero-
meter, which leverages the coherence of laser light to detect
changes in optical path length through interference fringe
variations, thereby enabling highly precise error measure-
ments. The measurement accuracy can typically reach the
nanometer scale, making it suitable for high-precision static
error detection and compensation under controlled envir-
onmental conditions[153,154]. To improve measurement effi-
ciency, multi-degree-of-freedom (MDOF) laser interferomet-
ric systems have been extensively studied. These systems often
employ multi-beam path splitting configurations or diffrac-
tion gratings to simultaneously measure errors across sev-
eral degrees of freedom. For instance, Liu et al. developed
a three-degree-of-freedom interferometric system; Hsieh pro-
posed a six-degree-of-freedom heterodyne grating-based sys-
tem; and Lu introduced a symmetric Littrow-configuration
grating encoder. These systems have demonstrated high res-
olution and excellent measurement consistency in experi-
mental validations[11,55,156]. Despite its outstanding accur-
acy, laser interferometry is highly sensitive to environmental

11



Int. J. Extrem. Manuf. 8 (2026) 022002
Multi-source errors evaluation of machine tools...

Sun J et al.

disturbances and requires costly equipment, which limits its
widespread industrial deployment.

As shown in Figure 7(b), the measurement of the atti-
tude error is usually carried out using autocollimators and
level gauges. The former can achieve high-precision meas-
urement of the pitch and yaw angles by utilizing the prin-
ciple of light beam reflection, while the latter detects the roll
error based on the gravity reference[147]. In recent years, the
development of triaxial angular measurement units—such as
triaxial autocollimators and triaxial inclinometers—has sig-
nificantly expanded the applicability of these techniques and
enhanced their capability for simultaneous multi-degree-of-
freedom error detection[148,157,158].

As shown in Figure 7(c), for the measurement of the six-
degree-of-freedom error of the rotating axis, various optical
measurement methods have been proposed in previous stud-
ies. Chen et al.[159] developed a photoelectric measurement
system comprising a conical–polygonal mirror and three pairs
of laser diodes with position-sensitive detectors (PSDs). By
detecting the displacement of laser spots on the PSDs, this sys-
tem enables non-contact measurement of the 6-DOF motion
errors of rotating components. Subsequently, Liu et al.[149]

proposed an optical measurement device based on a combin-
ation of a conical lens and a multi-facet mirror, which also
allows for the simultaneous detection of all six error compon-
ents of rotary axes.

Compared with linear axes, rotary axes pose greater chal-
lenges for precise and synchronous error measurement due to
the inherent uncertainty of rotational motion and the strong
coupling between error components. Accurate 6-DOF meas-
urement of rotary axes therefore remains a critical and unre-
solved issue in the field of precision metrology.

As shown in Figure 7(d), machine vision is based on
image acquisition and processing technology and is suitable
for non-contact and high-speed automated detection tasks.
It can achieve error feature recognition, visualization, and
real-time tracking[160,161]. However, its recognition accuracy
relies on extensive sample training, and it may face risks such
as poor robustness and overfitting under complex working
conditions[162,163].

Overall, the direct measurement method has the advant-
ages of high measurement accuracy, clear decoupling of error
terms, and traceable results. It is suitable for the standard
detection and initial modeling of the geometric performance
of machine tools. However, its adaptability in identifying
the comprehensive errors of the entire machine tool or in
dynamic working conditions at the production site is relatively
limited.

3.1.2. Indirect measurement methods. Indirect measure-
ment methods estimate various error sources by measuring the
machine tool’s response after executing specific trajectories or
machining standard workpieces, combined with error model
inversion. Their core advantage lies in not requiring sensors
to be installed individually on each error source, enabling col-
laborative identification of system-level errors for the entire
machine. These methods are suitable for rapid evaluation and

error compensation modeling of machine tools during oper-
ation. Typical techniques include the diagonal test and step
diagonal test, laser trackers, double ball-bar tests, R-test and
its derived extended methods, as illustrated in Figure 8.

As shown in Figure 8(a), the diagonal test and the step
diagonal test are among the earliest standardized methods[166].
They evaluate inter-axis errors and spatial straightness by
moving along multiple diagonal paths and performing dis-
tance measurements[167,168], but they have difficulty captur-
ing angular errors. In traditional diagonal tests for spatial error
identification of machine tools, limited measurement traject-
ories often lead to ineffective decoupling of multi-axis geo-
metric errors. To improve the completeness and observabil-
ity of error identification, subsequent studies have proposed
improved methods such as the three-face step method and the
13-linemethod. These approaches design spatial measurement
trajectories with multiple directions and postures to simultan-
eously identify position-dependent geometric errors (PDGEs)
and position-independent geometric errors (PIGEs), thereby
significantly enhancing the modeling and evaluation capabil-
ities for multi-source errors in machine tools[169,170].

As shown in Figure 8(b), the laser tracker, due to its high
precision, wide range, and three-dimensional dynamic track-
ing capabilities, has beenwidely applied in the identification of
spatial errors and geometric accuracy verification of high-end
gantry machines and five-axis machining centers, becoming
one of the important means to achieve high-precision mod-
eling and error compensation[171,172]. A multilateration sys-
tem constructed by multiple laser tracker stations can infer
the three-dimensional position of target points through multi-
source distance information without the need for angle meas-
urements, enabling spatial error modeling and accuracy eval-
uation of machine tools[173]. To reduce equipment costs and
installation complexity, pseudo-multilateration methods sim-
ulate multi-point measurement configurations by moving a
single laser tracker, and have been widely used for on-site
accuracy verification and error compensation modeling of
large machine tools and complex equipment[174].

As shown in Figure 8(c), the DBB test is centered on
detecting the deviation of circular interpolation trajectories.
It features simple operation, rapid measurement, and strong
environmental adaptability, and is widely used in the evalu-
ation of geometric accuracy and dynamic performance of CNC
machines[175]. It is particularly suitable for the needs of indus-
tries such as automotive mold manufacturing[176]. The DBB
system records the actual deviations of the machine tool dur-
ing two-axis coordinated circular motion via a ball-bar device,
and then derives key performance parameters such as perpen-
dicularity, backlash, and servo gain[58]. Although the cover-
age of the ball-bar system is limited, it is suitable for rapid
on-site inspection[177,178]. Moreover, the combined applica-
tion of DBB and laser interferometry integrates the advant-
ages of both, enhancing the comprehensiveness and accuracy
of rotary and linear axis error detection, and is often used for
calibrating position-independent geometric errors (PIGEs) in
high-end equipment[179].

In recent years, to improve measurement adaptability and
identification capability, load double ball-bar (LDBB) systems
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with preload functions have been developed to simulate load
conditions during machining, thereby identifying static stiff-
ness responses and their effects on trajectory accuracy[180,181].

For the identification of rotary axis errors in five-axis
CNC systems, researchers have proposed multi-path com-
bination testing methods and two-step testing methods. By
varying bar length, installation angle, and measurement path
design, these methods achieve stepwise separation and mod-
eling of position-dependent geometric errors (PDGEs) and
position-independent geometric errors (PIGEs) of rotary axes,
effectively addressing challenges such as error coupling and
installation deviations[182,183].

As shown in Figure 8(d), to overcome the limitations of
the ball-stick test in measuring spatial errors, Weikert[184] pro-
posed the R-test instrument and method. This system com-
prises a probe and a standard ball, using multiple non-contact
displacement sensors to detect minute displacements of the
ball center in the X, Y, and Z directions in real time, thereby
enabling comprehensive detection of spatial errors in machine
tools. This approach effectively identifies spatial and position-
ing errors in five-axis machining centers, enhancing the accur-
acy of error modeling[185−188].

To overcome the precision bottlenecks of traditional three-
axis testing in multi-axis systems, researchers have further
developed advanced testing strategies such as the DBB sys-
tem and theMultiple Test Arbors (MTA)method. For instance,
Lei et al.[189] proposed a DBB method capable of evaluating

dynamic errors of rotary axes in five-axis CNC machines and
assisting in servo parameter tuning. Li et al.[190] developed the
MTA strategy, which enables efficient calibration under com-
plex postures through coordinated measurement with multiple
arbors and virtual TCP constraints. This approach addresses
core issues in hybrid machine calibration, such as complex
equipment setup, difficulty in posture measurement, and tool
change accuracy degradation, significantly improving the spa-
tial calibration accuracy and modeling reliability of multi-axis
systems.

3.1.3. Integration of direct and indirect methods. Direct
measurement methods and indirect measurement methods
each have their own advantages in terms of application scen-
arios and technical characteristics. In actual manufacturing,
the two are often used in a complementary and cooperat-
ive manner. The former is suitable for high-precision static
error calibration and modeling initialization, while the latter is
more appropriate for state evaluation and error tracking dur-
ing dynamic operation. For example, ball-bar testing is widely
applied in automotive mold production lines, enabling rapid
assessment of roundness errors and servo tuning quality in
multi-axis CNC systems, without the need to disassemble the
machine tool for real-time adjustment. The R-test technique
can characterize spatial errors in five-axis machining centers,
allowing comprehensive evaluation of volumetric accuracy in
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the processing of complex parts such as turbine blades or med-
ical implants. In aerospace manufacturing, laser interferomet-
ers are used for initial calibration to ensure system accuracy,
while ball-bar and R-test methods support rapid diagnosis and
adjustment during operation. The integrated use of both meth-
ods not only enhances system robustness and measurement
coverage, but also improves the credibility and generalization
capability of error modeling.

Moreover, with the advancement of multi-axis intelli-
gent manufacturing, integrated strategies have become a
mainstream trend. Direct measurement provides a founda-
tional basis for validating model parameters used in indirect
algorithms, while indirect measurement enhances the system’s
responsiveness and adaptability to operational errors through
dynamic data acquisition. This integrated approach signific-
antly improves the long-term stability, accuracy consistency,
and intelligence level of high-end CNC systems, laying a solid
foundation for subsequent error modeling, compensation, and
closed-loop control.

3.2. Intelligent system

As the demand for accuracy, efficiency, and response speed
in complex part manufacturing continues to grow, traditional
error identification methods show clear limitations under con-
ditions involving multi-source coupling, dynamic variation,
and high-frequency disturbances. Intelligent system technolo-
gies offer a new architecture for machine tool error identific-
ation and evaluation. By integrating multi-sensor perception,
intelligent data analysis, and adaptive control, they signific-
antly enhance perception capabilities and response accuracy
in dynamic environments.

3.2.1. Architecture and key technologies. In high-speed
multi-axismachining scenarios such as aerospace, automotive,
and semiconductor manufacturing, machine tools face sub-
millisecond-level dynamic response requirements. The pres-
ence of thermo-mechanical coupling, nonlinear servo lag, and
multi-source disturbances leads to a highly complex error
evolution process that cannot be accurately identified using a
single method. At the same time, massive amounts of high-
frequency heterogeneous data pose significant challenges to
real-time computation and feedback, highlighting the urgent
need for high-bandwidth, multi-source fusion, and adaptive
error identification technologies.

In recent years, intelligent systems that integrate multi-
sensor perception[191,192], AI and machine learning[193,194],
digital twin modeling[195,196], computer vision and non-
contact measurement[197], big data analysis, and Internet of
Things (IoT) technology[198] have become a major trend in
error analysis and control. These systems not only realize real-
time error monitoring, non-contact recognition, and online
modeling, but also significantly improve the precision and
speed of prediction and compensation.

Among them, digital twin technology reconstructs machine
tool operating states through virtual–real mapping, mak-
ing it especially suitable for early-stage error modeling,

dynamic prediction during operation, and system stabil-
ity analysis[199−201]. By leveraging real-time data-driven
mechanisms and virtual–real fusion, the system can con-
tinuously perceive state evolution trends, support dynamic
modeling, bias intervention, and closed-loop control—
substantially reducing modeling costs and improving response
robustness[202−205].

At the same time, machine vision combined with deep
learning demonstrates significant advantages in error fea-
ture recognition. By using image processing and neural net-
work models, key error features can be accurately extrac-
ted under diverse working conditions[206,207]. For example, in
addressing thermal error issues, displacement sensors and fiber
Bragg grating (FBG) sensors are deployed to monitor thermal
deformation fields[208−210], and visual systems are employed
for dynamic modeling, enabling thermal error pattern recog-
nition and real-time compensation optimization[211,212].

Figure 9 illustrates the technical pathway and functional
modules of the intelligent error identification system, encom-
passingmulti-source data acquisition, feature extraction, intel-
ligent algorithms, error tracing and decoupling, and real-time
feedback control. The system is capable of integrated archi-
tecture, cross-scale perception, and full-process optimization.

In practical applications, intelligent error identification sys-
tems typically include three key stages: First, the error iden-
tification stage integrates physical modeling with data-driven
methods, combining higher-order statistics and deep learn-
ing to achieve accurate extraction and nonlinear modeling
of error features. Second, the error tracing and decoupling
stage identifies error sources and their transmission paths
based on multi-sensor data and simulation models, reveal-
ing the multi-source coupling mechanisms. Third, the pre-
diction and control stage builds closed-loop control through
real-time data feedback and adaptive strategies, achieving
error suppression and system steady-state maintenance in
dynamic environments. This architecture provides efficient
support for error management in complex manufacturing
scenarios.

3.2.2. Application strategies. Based on a digital twin and
an AI-integrated intelligent system for error identification
and evaluation, this system incorporates four sub-modules:
geometric model, physical model, behavioral model, and
rule model. These modules are linked via hybrid modeling,
enabling dynamic characterization and modeling of multi-
physics field coupling errors as well as compensation and con-
trol of multi-source errors, as shown in Figure 10.

Figure 10(a) illustrates the functions and components of
the four types of sub-models. The geometric model describes
nominal deviations in the machine structure, providing a
framework for geometric error modeling. The physical model
simulates thermal conduction and mechanical deformation,
modeling the thermo-mechanical-force coupling response to
support the modeling and compensation of thermal and vibra-
tion errors. The behavioral model simulates the dynamic
response of the machine tool, providing real-time adaptive
learning to assist in dynamic error prediction and analysis. The
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Figure 9. Key technologies and functions of the intelligent system in the evaluation of multi-source errors of machine tools.

rule model offers strategy support for error compensation and
control, enabling real-time precision adjustments.

Figure 10(b) presents a complete data processing frame-
work for machine tool multi-source errors, covering error data
acquisition and preprocessing, storage and analysis, fusion
techniques, and visualization. During machine tool operation,
a vast amount of heterogeneous data is generated from the
machine entity, digital twin model, and decision control sys-
tem. The data spans structured, semi-structured, and unstruc-
tured formats, with frequencies ranging from 10 Hz to 10 kHz
and data volumes from kilobytes to gigabytes, exhibiting high
frequency, high heterogeneity, and high dimensionality[216].
To address these characteristics, techniques such as Z-score
normalization and principal component analysis (PCA) are
used for standardization and dimensionality reduction[217],
improving data consistency and model input quality. Data
quality is further improved through data cleaning and out-
lier handling[218,219]. Deep learning, neural networks, and
deep reinforcement learning are used for adaptive training and

online updating of error prediction models. Training sets are
expanded via virtual sample generation[220] and Generative
Adversarial Networks (GANs)[221], enhancing model gen-
eralization and adaptability. Sequence analysis and error
decision fusion techniques provide multi-dimensional support
for dynamic precision control[222].

Figure 10(c) outlines five major research focus areas in
machine tool error analysis. First, error identification and
optimization, where machine vision and sensor technologies
improve identification precision and environmental adaptab-
ility, providing reliable data for compensation. Second, state
awareness and data fusion technologies enable accurate error
prediction and control under different working conditions.
Third, data-driven error modeling methods, combined with
deep learning, improve the recognition of complex error pat-
terns and enhance model realism and applicability. Fourth,
error tracking and decoupling techniques reveal the transmis-
sion paths of complex error sources, facilitating precise sys-
tem adjustment. Fifth, real-time compensation and interactive
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Figure 10. Framework for modeling, analysis and control of multi-source errors in machine tools[213−215]. (a) Functions and composition of
sub-modules in digital twin modeling. (b)Machine tool error data processing framework. (c) Key research areas in machine tool error analysis.
(d)Machine tool error control and impact on accuracy. (e) Integrated technologies for error modeling, prediction, and compensation. (f) Virtual
and real error models in CNC machining.

16



Int. J. Extrem. Manuf. 8 (2026) 022002
Multi-source errors evaluation of machine tools...

Sun J et al.

feedback mechanisms enable immediate error adjustment in
dynamic environments, effectively reducing error accumula-
tion. These key areas complement one another and collectively
enhance system error control capabilities.

Figure 10(d) summarizes the multi-level machine tool error
control strategies and their impact on machining accuracy.
From the outermost to innermost levels, it clearly illustrates
different technical requirements and optimization goals. The
outer layer focuses on improving overall machining accur-
acy, enhancing equipment stability, and reducing debugging
costs, emphasizing the importance of data-driven error com-
pensation and real-time feedback mechanisms. The middle
layer addresses machining quality, production efficiency, and
the impact of assembly errors on the manufacturing process,
reinforcing process stability. The innermost layer delves into
the microscopic machining level, exploring the direct impact
of errors on precision and promoting micro-level optimiza-
tion. Through a progressive strategy system combining real-
time monitoring, error simulation, and compensation, over-
all machining accuracy and productivity are systematically
improved.

Figure 10(e) summarizes the integrated technical sys-
tem for real-world machine tool error modeling, prediction,
and compensation. It includes multidisciplinary and multi-
physics integrated simulation, subsystem modular design,
real-time monitoring, predictive analysis, and closed-loop
control, forming a systematic, all-encompassing error control
architecture. This integration not only enhances error control
capability but also, through intelligent and modular design,
improves system flexibility, adaptability, and intelligence—
driving the advancement of high-precision machining and
intelligent manufacturing.

Figure 10(f) summarizes a system framework in CNC
machining error research encompassing virtual and real error
models, control strategies, and advanced technologies. It
presents the latest developments across the full process from
error identification, modeling, and analysis to prediction and
compensation control. Especially, the high-efficiency coordin-
ation between virtual models and physical entities enables
high-precision error perception, prediction, and real-time
compensation even in dynamic environments, advancing CNC
machine tools toward high performance and intelligence.

Despite the advantages of intelligent error identification
systems in real-time performance and adaptability, several
challenges remain: they heavily rely on large volumes of high-
quality data, and insufficient or biased data may lead to model
overfitting and performance instability; cross-platform migra-
tion is difficult, requiring retraining under different equip-
ment or conditions; deep models lack physical interpretability,
making industrial validation difficult; and system deployment
relies on multi-sensor configurations and high computational
platforms, increasing integration and maintenance costs.

To address these issues, multi-sensor fusion technolo-
gies have been widely adopted. By integrating displace-
ment, thermal, force, vibration, and servo feedback sig-
nals across multiple domains, these technologies enhance
error separation capabilities and system robustness. Fusion
algorithms such as Kalman filtering, Bayesian inference, and

deep residual networks further improve adaptive modeling
and online compensation[223−226]. Moreover, emerging edge
computing-assisted fusion mechanisms and high-speed digital
twin feedback architectures have shown preliminary success
in reducing response latency and improving model update
efficiency[227−229].

However, achieving truly high-frequency, scalable, phys-
ically interpretable, and cross-platform generalizable intel-
ligent recognition systems remains a key research fron-
tier in intelligent manufacturing[230]. Building hybrid mod-
eling systems that integrate physical mechanisms with data-
driven approaches to balance interpretability, generalization,
and real-time performance, is a crucial direction for future
development—and one of the core goals of the multi-level
integrated architecture proposed in this paper.

4. Theoretical modeling

Error modeling aims to accurately describe the internal mech-
anisms of error generation and propagation. A hybrid model-
ing approach that combines physical models with data-driven
models is used to capture complex multi-physics coupling and
nonlinear behaviors, thereby improving model accuracy and
adaptability to changing conditions.

4.1. Geometric error modeling

With the evolution of CNC technology and the growing
demand for high-precision machining, geometric error mod-
eling has become fundamental to optimizing machining per-
formance and maintaining operational stability[231]. Based on
measurement results, geometric error characteristics of trans-
lational and rotational axes can be systematically identified,
and corresponding mathematical models established to sup-
port error propagation analysis, online monitoring, and real-
time compensation[232].

These models are applied not only for static structural error
analysis but also for predicting and correcting errors under
variable conditions, such as thermal deformation, thus main-
taining long-term dimensional accuracy[233]. Compensation
and calibration techniques based on geometric error models
are widely used in industry, effectively improving part dimen-
sional accuracy and tolerance consistency. Two representative
methods are homogeneous transformation matrices and screw
theory, which are discussed below.

4.1.1. Homogeneous transformation matrix. The homogen-
eous transformation matrix provides a unified way to represent
translation and rotation in space[234]. By combining transform-
ations via matrix multiplication, complex kinematic sequences
are simplified—particularly useful in multi-axis CNC kin-
ematic analysis to ensure the end-effector reaches its target
position and orientation accurately[232].

The advantage of this method lies in its ability to decom-
pose transformation operations into basic rotation and trans-
lation matrices, clearly revealing the impact of each motion
component on overall geometric accuracy, thus providing a
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basis for error traceability and compensation. In addition,
the homogeneous transformation matrix method demonstrates
good adaptability and scalability in the field of machine
tool geometric error modeling. Homogeneous transformation
matrices are adept at describing static geometric deviations,
but they lack adaptability in dynamic conditions and complex
multi-axis interaction scenarios.

4.1.2. Spiral theory. Screw theory, grounded in rigid-body
motion principles and introducing concepts like screw axis and
pitch, describes simultaneous translations and rotations[235].
Compared with traditional methods, screw theory provides a
more intuitive analysis of error coupling in high-speed, high-
precision scenarios and is particularly suitable for analyzing
five-axis CNC paths[236].

In dynamic machining environments, screw theory lever-
ages instantaneousmotion properties to support real-time error
modeling and compensation. Its strong differential kinematics
capabilities help dynamically optimize tool paths based on tra-
jectory deviations, significantly improving process accuracy
and stability[235].

Overall, homogeneous transformation matrices and screw
theory each possess unique advantages in sequential trans-
formation processing and complex coupled motion modeling.
Their combined use allows systematic identification, quan-
tification, and compensation of geometric errors in machine
tools, enhancing machining quality and equipment reliability
in high-end manufacturing[237].

4.2. Thermal error modeling

Thermal error modeling plays a key role in achieving high-
precision manufacturing and effective thermal compensation
control. It integrates information from temperature fields,
structural deformation, and end-effector pose deviation to
build efficient, interpretable models capable of real-time pre-
diction. With advances in multi-physics simulation, sensor
networks, and AI, thermal modeling is evolving toward integ-
ration, intelligence, and high precision.

Based on modeling principles, thermal error methods
fall into empirical modeling and theoretical modeling[238].
Empirical models treat thermal error as a black box and rely
on experimental data to map temperature changes to errors.
Theoretical models incorporate heat-transfer theory and struc-
tural thermal deformation mechanics to construct physically
meaningful mathematical models.

Empirical methods focus on data-driven modeling, using
techniques such as least squares[239,240], multiple regression
analysis[241], support vector machines[242], artificial neural
networks, and fuzzy inference systems[240]. Thesemethods are
efficient in complex environments, providing strong adapta-
tion for real-time thermal predictions. Especially, hybrid mod-
els like wavelet or dynamic fuzzy neural networks have been
widely applied to model spindle thermal drift and feed system
thermal error[243,244].

Regression analysis enables quick temperature-to-error
predictions without extensive physical modifications, though

it struggles with complex nonlinear relations[245]. Machine
learning methods address this limitation by capturing intricate
temperature-deformation relationships. For example, fuzzy-
neural network models predict spindle thermal deformation
using temperature data[246]. Traditional sensor fusion methods
rely on limited measurement dimensions and encounter diffi-
culties in dealing with constantly changing process disturb-
ances and heterogeneous data fusion, making them unable to
cope with non-stationary and complex working conditions.

However, empirical models still face challenges in indus-
trial applications: they are highly dependent on the quality
and distribution of samples, lack generalization capability
across different machine tools and processes, and suffer from
insufficient physical interpretability, making them difficult to
support thermal design optimization for machine tools. To
address these issues, current research is focusing on physics-
informedmachine learning, transfer learning, edge computing,
and digital twin technologies in an effort to improve model
prediction accuracy and adaptability under dynamic thermal
fields. For example, a recently proposed spatiotemporal inter-
active ensemble network integrates time-memory mechan-
isms with multi-scale fusion strategies, achieving a thermal
error prediction accuracy of 97.52% and reducing positioning
errors by 90% under small-sample conditions, offering a new
approach for digital twin-driven thermal compensation[247].

Theoretical models, based on heat source distribution,
structural response, and conduction, are important for
machine design optimization. Examples include homo-
geneous transformation-based thermal error models[248],
multi-region temperature/heating models for screw thermal
distribution[249], closed-loop iterative models for ball-screw
thermal error prediction[250], and spindle thermal drift mod-
els stable under speed and cooling perturbations[251]. These
methods emphasize thermal source mechanisms and error
transfer paths and work best under well-defined structural and
boundary conditions.

Finite element analysis (FEA), as an important tool for the-
oretical modeling, can accurately simulate the heat conduc-
tion, convection, and radiation processes in complex struc-
tures, and is widely applied in the thermal characteristic pre-
diction of key components such as spindles, lead screws,
and bed frames[252]. It supports thermal deformation pre-
diction under varying loads and environments[253−255]. The
combination of power-matched temperature control strategies
can analytically link temperature and deformation fields to
enhance precision stability[256]. However, its large computa-
tional load, poor real-time performance, and highly dynamic
thermal boundary conditions during the processing process
limit its online application capability. At the same time, the
model’s accuracy is highly dependent on the completeness of
geometric, material, and assembly parameters, and is easily
affected by structural aging and wear, resulting in insufficient
long-term application stability[72,257].

In summary, empirical modeling offers fast deployment
and real-time compensation, theoretical modeling supports
understanding of thermal mechanisms and system optimiza-
tion, and FEA excels in complex-structure scenarios. Future
directions lie in hybrid modeling that integrates physics and
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data-driven approaches for interpretable, high-precision, self-
adaptive thermal error systems.

4.3. Dynamic error modeling

Dynamic error modeling is critical in precision engineering,
particularly for optimizing CNC machine tool performance.
These errors manifest as time-dependent changes in tool pos-
ition, orientation, and process parameters, directly affecting
part quality. To analyze and predict machine tool dynamic
behavior, modal analysis and transfer-function modeling are
widely used.

Modal analysis is a key technique for studying the
dynamic behavior of mechanical structures. It is used to
identify the inherent vibration modes of machine tools and
provides dynamic characteristics such as natural frequen-
cies, mode shapes, and damping ratios[258]. These paramet-
ers are essential for predicting the response of a machine
tool under dynamic loads and help identify the primary vibra-
tion modes that may lead to machining errors. By evaluat-
ing these vibration modes, engineers can design optimization
strategies—such as modifying the structural design or introdu-
cing damping measures—to improve the operational stability
and machining accuracy of the machine tool.

During the modal analysis process, various methods can be
used to obtain the necessary data. Experimental modal ana-
lysis typically involves applying a known input (such as an
impact hammer or shaker) to excite the machine tool and using
accelerometers or other sensors to measure the response[259].
From these measurements, the Frequency Response Function
(FRF) can be derived, which allows for the calculation of the
system’s modal parameters. In addition, mathematical mod-
eling and numerical simulation methods can be employed to
predict the modal characteristics of machine tool components
under different working conditions, enabling the optimization
of design and operational strategies.

Transfer function modeling, on the other hand, is based
on the mathematical relationship between system inputs and
outputs, using the Laplace transform to describe dynamic
response characteristics[260]. Through system identification
methods and experimental data collected during operation,
a dynamic behavior model of the machine tool can be
established. Transfer functions not only facilitate simulation
and analysis prior to physical adjustments, but also serve
as an important tool for error compensation and dynamic
optimization.

Modal analysis and transfer function modeling are comple-
mentary approaches in dynamic error modeling. The former
focuses on revealing the internal dynamic characteristics of
the machine tool structure, while the latter emphasizes the
input-output response relationship. Together, they support the
development of machining error prediction and compensa-
tion strategies[261]. Based on these methods, researchers can
systematically enhance the dynamic stability and machining
accuracy of machine tools through structural design optim-
ization, control system integration, real-time monitoring, and
adaptive adjustment.

In summary, systematic modeling of dynamic errors using
modal analysis and transfer function modeling not only

provides a theoretical foundation for reducing machining
errors and improving product consistency but also lays the
groundwork for future efficient and intelligent dynamic error
control technologies. With the continuous advancement of
manufacturing and intelligent technologies, this field holds
vast development potential.

4.4. Integrated error modeling

In high-end manufacturing, traditional methods mostly rely
on offline modeling and fixed mathematical structures, mak-
ing it difficult to cope with the dynamic evolution of errors
under complex working conditions. These methods lack real-
time performance and adaptability, and the error modeling
processes are independent of each other, lacking the capabil-
ity for collaborative analysis and fusion of multi-source errors,
thus hindering coordinated compensation. The cross-coupling
among geometric, thermal, cutting force, dynamic, and control
errors has become a critical bottleneck in maintainingmachine
tool accuracy[262,263].

DT technology introduces a cyber-physical synchroniza-
tion mechanism, enabling real-time state monitoring, multi-
physics interactive simulation, and dynamic adaptive mod-
eling, thereby reshaping the paradigm of error management.
Especially when combined with AI methods, such as Long
Short-Term Memory (LSTM) networks and other advanced
machine learning techniques, error modeling has shifted from
a static, offline approach to a dynamic, full-process accuracy
management framework. This systematically addresses core
issues of traditional modeling in nonlinear behavior descrip-
tion, uncertainty handling, error coupling characterization,
and real-time adaptability. Studies have shown that virtual
machine tool technologies[264] have already achieved integ-
rated modeling of spindles[265], feed systems[266], and cutting
processes[267], effectively supporting machining performance
prediction and operational optimization[268,269]. Integrated
error modeling unifies modeling and multi-source data fusion,
revealing the interaction and transmission mechanisms among
errors and providing systematic support for precision control.

This section summarizes an integrated error model-
ing framework based on the “perception–modeling–control”
closed-loop concept, integrating multi-physics modeling,
data-driven, and hybrid modeling approaches to support
dynamic error prediction and lifecycle-wide compensation.
The subsequent content elaborates on four aspects: core sub-
models, multi-level modeling strategies, real-time control, and
evaluation systems.

4.4.1. Core sub-model. In the integrated error model-
ing framework, four core sub-models are defined: geometric
model, physical model, behavioral model, and rule model.
These describe the generation and evolution mechanisms
of errors from structural, mechanistic, response, and stra-
tegic levels, respectively. Figure 11 illustrates key enabling
technologies and representative application platforms for each
core model.

19



Int. J. Extrem. Manuf. 8 (2026) 022002
Multi-source errors evaluation of machine tools...

Sun J et al.

Geometric model

Point cloud technology

Building information model 

Reverse modeling technology

Physical model

Finite element analysis

Multiphysics coupling
modeling

Reduced order modeling 

Behavioral model

Kinematic/dynamic equations

Stochastic modeling: monte 
carlo, markov chain

Rule model

Machine learning

Data mining & knowledge 
graphs

Enabling technologies

Typical tools and platforms

Pro/E、CATIA、SolidWorks (Industrial
machinery modeling) 

Autodesk revit、surfer (Building/geographic 
information modeling)

LiDAR scanner、Zenfone AR (Three-
dimensional scanning)

Geometric 
model

CATIA modeling

Ansys、Abaqus (General finite element 
analysis)

Simulink、OpenModelica (Multi-domain 
modeling)

MWorks、Demo 3D (Electromechanical 
system simulation)

Physical 
model

Abaqus simulation

JavaScript (Three.js Script control)

AutomationML (Discrete interaction
modeling)

Simcenter Amesim (Multidisciplinary 
collaboration)

Behavioral 
model

Simulink control

TensorFlow、PyTorch (Deep learning 
framework)

Protégé (Ontology management)

Simulink、Matlab (Rule verification)

Rule model

Matlab optimization

Multidisciplinary fusion 
modeling

Denavit-Hartenberg symbolic 
method

Differential equation modeling

Data-driven modeling

Ontology modeling

Fuzzy logic
Object-oriented modeling

Finite element modeling

WebGL、Three.js (Web side rendering)
PreComp (Composite material modeling)

Unity3D、CarSim (Real-time 
simulation)

Ontology web language (Semantic rule 
description)

(Benchmark) (Mechanism)

(Dynamics) (Intelligent decision-
making)

Figure 11. Enabling techniques, typical tools and platforms of the core sub-model[270].

The geometric model provides the spatial reference
for error modeling, focusing on the geometric structure
and assembly relationships of machine tool components.
Through virtual assembly and interference analysis, it
can optimize structural layout, shorten error transmis-
sion paths, and enhance system stability and machining
accuracy.

The physical model, based on thermo-mechanical-
structural multi-physics coupling, describes the mechanisms
of error sources such as thermal deformation, cutting forces,
bearing wear, and backlash, and quantifies their impact on
terminal accuracy. It serves as the theoretical foundation for
error traceability and control.

The behavioral model characterizes the dynamic response
and error variation of machine tools during operation. By
combining multibody system dynamics simulation and tra-
jectory tracking techniques, it enables error trend prediction
and constructs sensor-driven adaptive control mechanisms
to realize dynamic compensation and real-time optimization
during machining.

The rule-based model integrates the outputs of the above
models to generate precision control strategies. Relying on
deep learning (e.g., LSTM) and knowledge graphs, it com-
bines process knowledge with data-driven methods to optim-
ize compensation schemes online and adaptively adjust pro-
cess parameters based on real-time feedback, thereby enhan-
cing system robustness.

4.4.2. The methodology of modeling. Error modeling
driven by digital twin technology primarily relies on three
modeling approaches: physics-based modeling, data-driven
modeling, and hybrid modeling. Each corresponds to differ-
ent integration strategies for sub-models, forming a multi-
paradigm collaborative mechanism aimed at achieving high
accuracy, strong real-time performance, and intelligent evolu-
tion capabilities in error modeling. The effective operation of
this modeling system depends on two core capabilities: first,
real-time updating ability, which enables dynamic response
to changes in machining states; second, a model consistency
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Figure 12. Complementary relationship between physics-based and data-driven models. Reprinted from[284], Copyright (2022), with permis-
sion from Elsevier.

maintenance mechanism, which ensures predictive accuracy
and system stability throughout the modeling cycle[271].

Physics-driven modeling focuses on constructing high-
fidelity models based on physical laws, commonly employ-
ing theoretical methods such as multibody dynamics and finite
element analysis. It primarily aims to quantitatively describe
the coupled processes of geometry, thermal, and mechan-
ical fields. Representative studies include: refined model-
ing and experimental validation of geometric errors in five-
axis machine tools[43]; thermo-mechanical coupling models
revealing the evolution of composite errors during the cutting
process[272]; thermal-mechanical coupling calculation meth-
ods for thermal deformation errors in motorized spindles[273];
and dynamic contact modeling of fixtures/spindles to enhance
adaptability to complex machining environments[274].

High-fidelity digital twin models constructed using these
methods can accurately model 41 geometric errors of machine
tools (including 21 translational errors and 20 angular errors).
For instance, the positioning error of the X-axis at −200 mm
is measured at 0.003 0 mm, while angular errors are precisely
fitted using third-order polynomial functions. By comparing
the predicted toolpath with the actual trajectory measured by
a coordinate measuring machine (accuracy: 1.5 µm+ L/350),
the model’s high fidelity and usability in toolpath contour error
prediction are verified[43].

Although physics-driven modeling offers excellent phys-
ical interpretability and prediction accuracy, it still faces chal-
lenges such as high computational cost, long modeling cycles,
and insufficient real-time performance under complex and
high-speed machining conditions, which limit its widespread
application in online control.

Data-driven modeling uses machine learning meth-
ods (e.g., Support Vector Machine (SVM), Convolutional
Neural Network (CNN), LSTM) to mine nonlinear mapping
relationships from sensor data and establish efficient error pre-
diction models for rapid forecasting and online compensation.

Representative applications include spindle thermal drift
prediction[275], tool wear modeling[276], and bearing dynamic
characteristics analysis[277]. Edge computing andmulti-sensor
fusion have significantly improved sensing efficiency[278,279].
However, the “black-box” nature and dependence on
high-quality data limit generalization and autonomous
decision-making capabilities[280,281].

Hybrid modeling combines the strengths of physics-driven
and data-driven methods. By retaining the physical model’s
interpretability while introducing dynamic corrections via
data-driven techniques, it achieves both high precision and
strong robustness in error modeling. As shown in Figure 12,
this modeling strategy has been widely applied in typical scen-
arios such as spindle thermal error, tool path error, and contour
error modeling[203,282,283].

With the development of 5G communications and
simulation-integrated CNC cores, researchers have achieved
high-frequency synchronization between physical entities and
virtual models[285,286], extending hybrid modeling to real-
time visualization of tool paths and cutting forces[287,288],
condition monitoring of grinding machines[289], tool fail-
ure prediction[290], real-time monitoring of spindle dynamic
properties[291], and online prediction of workpiece surface
roughness[292], thereby enhancing intelligent maintenance
capabilities.

In recent years, hybrid modeling has shown strong poten-
tial in performance degradation prediction. By combining con-
tour modeling of machining characteristics, thermal deform-
ation, and dynamic cutting force modeling, wear mechanism
modeling, and particle filter-based dynamic updates, research-
ers have achieved high-precision prediction of machine tool
thermal error, feed transmission error, contour error, and
spindle performance degradation[47,271,293−297]. This strategy
not only optimizes overall machine performance but also
improves the adaptability of process parameter to changing
conditions. By introducing adaptive triggering mechanisms, a

21



Int. J. Extrem. Manuf. 8 (2026) 022002
Multi-source errors evaluation of machine tools...

Sun J et al.

FxFyFz

Time/s
1 2 3 4 5 6 7 8 9

−50
0

100
50

R
eal-tim

e optim
ized control feedbackForce signal

Database

Features
DSN: VBi

DI:
YMRR
YTemp.
YFt'

DI:
YRa
YGap

Interconnection

Application

Optimization and control

Cutting mechanism DI Information fusion DMN Data-based DI/DSN

Physical parameters

Bionic digital brain
(Theoretical prophet)

G-Code
N01 M03 S1000;
N02 G00 X0. Z0.;
N03 G01 X-0.2
F0.1;
N04 Z-50 F0.15;
...

Cutting process

Digital twin

Bionic digital brain
Data cleaning

Feature extraction

Dimension reduction

Raw data

vi, fi, api

C
utting param

eters

3 s/15 s

vi+1, fi+1, api+1

DMN: GA Opt.
s.t. Ra, Ft, Temp.
Max. MRR

G-Code
N01 M03 S985;
N02 G00 X0. Z0.;
N03 G01 X-0.168 F0.1;
N04 Z-50 F0.173; ...

HMI

Gradient optimization algorithmDirect search algorithm

Global optimization algorithm Multi-objective algorithm

Finite element method

Numerical analysis

Empirical formula

(Actual perception)

Signal analysis method
Right brainLeft brain

Corpus callosum

Statistical and 
stochastic models

Fuzzy logic

Machine learning
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low-cost, efficient multi-source feature dataset updating sys-
tem has been built, significantly enhancing model dynamism
and practicality[34].

In terms of multi-source feature modeling, research-
ers have constructed multi-level electromechanical-hydraulic
digital-twin models covering mechanical, hydraulic, control,
and electrical subsystems, enabling virtual debugging and
dynamic updating of servo parameters[298]. Furthermore, the
proposed digital twin–driven composite control strategy has
improved the overall control accuracy of feed systems[299].
When addressing multi-axis coordination errors in high-speed
CNCmachining, researchers developed an electromechanical-
coupling model of multi-axis feed systems based on joint stiff-
ness and friction disturbances. Through unbiased least squares
identification of disturbance parameters and joint stiffness,
and trajectory fitting using Ferguson curves, they achieved
efficient estimation and dynamic pre-compensation of con-
tour errors, significantly improving the accuracy and stabil-
ity of five-axis machining[300]. Additionally, by combining
mechanism-based and data-driven models, researchers real-
ized dynamic optimization of cutting parameters and online
evaluation of machining stability[301].

For quantitative analysis of high-fidelity hybrid models,
particularly under conditions of limited samples and distribu-
tion differences in spindle thermal error modeling, a digital
twin strategy combining physical simulation modeling and
deep transfer learning has been proposed. By building a high-
fidelity model of spindle thermal behavior to generate syn-
thetic data and using a distance-guided domain-adversarial
network for source-to-target knowledge transfer, this method
achieves high-precision modeling even with minimal real-
world samples, boosting fitting accuracy by 11.73%[40].

Simultaneously, to improve system responsiveness,
researchers have explored instruction-signal excitation, integ-
ration of CAM and simulation, and edge–cloud deployment
strategies[302−305]. In modeling complex structures such
as gears and thin-walled workpieces, techniques including
Gaussian process regression and modal modeling have been

used to build dynamic error prediction and stability analysis
frameworks[269,306].

On the industrial application front, multiple cases have
demonstrated the practicality and feasibility of physics–
data hybrid modeling. For example, in aerospace aluminum
alloy milling, researchers developed a milling force pre-
diction model based on spindle speed, tooth feed rate,
and milling width. The neural network’s maximum pre-
diction error was only 4.34%, showing strong agreement
between simulation and experimental data—a practical, low-
cost solution[307]. In spindle thermal error modeling of CNC
machine tools, a hybrid approach combining physical mech-
anisms and data-driven methods decomposed the complex
spindle system into multi-link structures; by modeling lin-
ear deformation components with an equivalent-area method
and non-linear components with multi-module LSTM net-
works, the residual error of thermal prediction was reduced
by 45%[308].

Although hybrid modeling holds great promise, practical
implementation still faces many challenges, including high-
frequency synchronization between heterogeneous sensor data
and physical models, control stability issues in multi-time-
delay data fusion, high computational overhead during model
execution, and controlling structural complexity while main-
taining real-time performance. Industrial deployment typically
requires deep coordination with hardware acceleration and
system architecture, making integration challenging. Current
research is gradually overcoming these bottlenecks through
multi-rate scheduling, hierarchical modeling, and edge–cloud
collaborationmechanisms.Moreover, the Bionic Digital Brain
(BDB)—the intelligent core of the Digital Twin Cutter Process
(DTCP)—leverages “digital neurons (dn)” to fuse left- and
right-brain information and output optimal control schemes in
real time, achieving real-time monitoring, prediction, optim-
ization, and control of the cutting process[309], as illustrated in
Figure 13.

As shown in Table 3, comparisons of machine tool
error modeling and digital–physical synchronization methods
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Table 3. Typical machine tool error modeling methods and their main limitations.

Category Content Disadvantages References

Physical-driven model Geometric and kinematic analysis,
thermal error and dynamic modeling

High complexity, uncertain parameters,
poor adaptability, difficult model
validation

[43, 272, 274]

Data-driven model Machine learning-based analysis of
processing data, extracting key features
for modeling

Poor interpretability, complex
algorithms, poor generalization

[40, 199]

Hybrid model Combines physical mechanisms with
data-driven adaptive learning modeling

High complexity, difficult to understand
and maintain

[34, 200, 313]

Model-data connection Achieves real-time synchronization and
interaction between physical entities and
virtual models

Difficult real-time synchronization and
interaction

[277, 314]

reveal that although hybrid modeling offers significant poten-
tial, key challenges remain around model complexity control,
system integration, and efficient synchronization. Especially
in high-speed, dynamic environments, breakthroughs are still
needed in real-time integration of heterogeneous multi-sensor
data, further improving synchronization and generalization
capabilities of digital-twin control systems[310−312].

Physics-driven modeling emphasizes the interpretability of
governing laws, relying on physical principles and prior know-
ledge. It mainly integrates geometric and physical models
to form high-fidelity error descriptions. Data-driven model-
ing highlights rapid response capability, focusing on the use
of sensor data and machine learning methods, and relies on
behavioral and rule-based models to achieve dynamic predic-
tion and compensation. Hybrid modeling strikes an optimal
balance between the two by enabling model collaboration,
thereby enhancing the accuracy and adaptability of error mod-
eling. Together, these three modeling paradigms constitute the
core pathways of digital twin–based error modeling, enabling
the concrete construction and optimization of models.

Table 4 summarizes the applicability, advantages, and lim-
itations of machine tool error models under different modeling
approaches, providing critical support for a precision assur-
ance system geared toward real-time prediction and intelligent
control. Within the overall framework, models and modeling
methods exist in a parallel and complementary relationship:
sub-models define the content and perspective of error mod-
eling, while modeling methods provide the implementation
paths and optimization mechanisms. Their synergistic interac-
tion jointly constructs a machine tool error modeling and con-
trol framework oriented toward dynamic evolution and real-
time updating, supporting full-lifecycle management of preci-
sion retention and performance optimization.

4.4.3. Modeling framework and real-time closed-loop con-
trol system. Digital twin technology realizes the digital
representation and adaptive control of machine tool errors
by constructing geometric, physical, behavioral, and rule
models, and combining physics-driven, data-driven, and

hybrid modeling methods. Its core lies in mapping physical
entities into digital manufacturing modules, acquiring key
parameters such as position, temperature, vibration, and cut-
ting force in real time, and integrating them with virtual simu-
lation data such as trajectory, thermal stress, and error inform-
ation to establish a bidirectional interaction and closed-loop
control system between physical and virtual spaces[207]. When
integrated with AI technologies, this system gains capabilities
in real-time error monitoring, dynamic prediction, and intel-
ligent decision-making, significantly improving machining
accuracy and control efficiency under complex and dynamic
environments[315−317].

This interaction mechanism relies on two types of key
data sources: historical data to improve modeling accuracy,
and real-time data to support dynamic response and online
compensation[318,319]. Real-time data-driven analysis not only
enables error visualization but also provides theoretical sup-
port for process parameter optimization[320,321]. Figure 14
presents the multiple types of data involved in the machining
and simulation process and their respective modeling paths,
offering an intuitive reference for understanding data require-
ments in the modeling workflow.

To achieve high-precision and real-time error control, this
study proposes a multi-level error modeling and management
framework that integrates digital twin and AI technologies,
consisting of five core components: the physical module, vir-
tual module, data module, connection module, and service
module[325]. This framework runs throughout the entire pro-
cess of physical perception, virtual simulation, and intelli-
gent decision-making, establishing a systematic integration
mechanism and closed-loop control capability, as shown in
Figure 15.

This integrated framework builds an intelligent error con-
trol system suitable for complex manufacturing scenarios
through multi-source data acquisition and fusion, hybrid-
driven modeling, and real-time feedback control. Specifically,
the physical module targets the actual machining environ-
ment, monitoring geometric errors, static responses, dynamic
behaviors, and motion control characteristics of the machine
tool body, key components, workpieces, and manufacturing
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Table 4. Comparison and analysis of multi-model technology systems for machine tool error modeling and control.

Model
category Function

Main technologies
and methods

Key
application areas

Relation to machine
tool errors Advantages Disadvantages

Geometric
model

Spatial
reference
mapping,
structural
optimization

Geometric
modeling,
virtual assembly,
interference
analysis

Stability
improvement, error
transfer path
optimization

Fundamental for
error modeling,
directly affects
machining accuracy

Simple and easy to
understand, suitable
for static error
analysis; can
accurately capture
geometric forms

Unable to handle
complex dynamic
behaviors; weak
adaptability to
complex error sources

Physical
model

Multi-physics
coupling error
mechanism
analysis

Multi-physics
simulation, thermal
deformation and
mechanical
modeling

Error source
analysis and
prediction

Key source of
physical errors
(thermal
deformation,
mechanical loads,
etc.)

In-depth analysis of
error mechanisms;
adapts to complex
error sources

Large computational
load, high
experimental
verification
requirements

Behavioral
model

Dynamic
response and
real-time
trajectory
tracking

Multi-body
dynamics
simulation,
real-time data
collection and
dynamic modeling

Dynamic error
prediction and
real-time
compensation

Dynamic errors
caused by motion
trajectory changes

Real-time dynamic
prediction; suitable
for motion error
analysis

Complex modeling,
highly susceptible to
external
disturbances

Rule-based
model

Intelligent
decision-
making and
adaptive
compensation

LSTM, deep
learning,
knowledge graphs

Automatic error
compensation and
process dynamic
optimization

Optimizes error
compensation based
on intelligent
algorithms

Strong adaptability,
can handle complex
relationships;
continuous learning
and optimization

Requires a large
amount of training
data; poor model
transparency

Physics-
driven
modeling

High-fidelity
modeling based
on physical laws

Multi-body
dynamics, finite
element analysis,
thermal-structure
coupling

High-fidelity error
twin and complex
condition modeling

Supports in-depth
analysis of error
mechanisms

High-precision
modeling, detailed
error source
traceability

Complex
computation, poor
real-time
performance

Data-driven
modeling

Error trend
prediction
based on data

SVM, DNN,
LSTM, CNN, etc.

Thermal error
prediction, tool
wear modeling,
error optimization

Data-driven
modeling of error
evolution laws

Adapts to complex
non-linear systems;
continuous model
optimization

Requires
high-quality data;
lacks mechanistic
interpretability

Hybrid
modeling
method

Collaborative
optimization of
physical and
data models

Integration of
physical and data
models, time-series
analysis

Improves error
prediction accuracy
and adaptability

Combines physical
and data models,
enhancing
prediction and
control

Combines the
advantages of both
model types,
improving accuracy
and robustness

Complex modeling
and optimization,
high resource
requirements

Digital twin
system

Real-time
synchronization
and status
monitoring

Edge computing
and cloud
computing
collaboration,
bidirectional data
flow

Real-time
monitoring,
dynamic
optimization,
accuracy
improvement

Supports full
lifecycle error
management and
optimization

Strong real-time
monitoring and
dynamic adjustment
capabilities

High
implementation cost,
complex technology,
high infrastructure
requirements

(Continued.)
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Table 4. (Continued.)

Model
category Function

Main technologies
and methods

Key
application areas

Relation to machine
tool errors Advantages Disadvantages

Multi-source
data fusion

Integration and
analysis of
sensor and
process data

Multi-sensor fusion,
edge computing,
intelligent
algorithms

Real-time error
factor identification
and prediction
accuracy
improvement

Multi-source
information fusion
enhances error
perception

Enhances system
robustness and
real-time
performance

Difficult data
synchronization,
susceptible to noise
interference

Performance
optimization
and control

Adaptive
control and
optimization
based on twin
systems

Particle swarm
optimization, deep
learning, online
fault prediction

Stability
improvement, fault
warning, and
performance
optimization

Optimizes control
strategies, reducing
error impact

Dynamic adjustment
of control strategies,
improving machine
tool performance

High real-time
requirements,
complex
optimization process

Real-time position data

Temperature data

Cutting 
force 
signal

Vibration
signal

Motion information
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Machine tool error data
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Figure 14. Error modeling technology based on real-time data and virtual simulation-driven approach[288,322−324]. Adapted from[288], with
permission from Springer Nature. Reproduced from[322]. CC BY 4.0.

environment[331,332]. With high-resolution sensors and feed-
back mechanisms, it can rapidly perceive the error evolu-
tion process, provide high-quality training data for subsequent
modeling, and enhance model accuracy through closed-loop
correction mechanisms. The virtual module focuses on high-
fidelity simulation, mapping dynamic features in the machin-
ing process in real time, such as trajectory changes, thermal
stress distribution, and spindle structure deformation. Relying
on multi-sensor collaborative measurement, it aligns and
cross-verifies virtual and physical measurements to improve
the reliability of error prediction and the accuracy of com-
pensation decisions[312]. The data module, as the information

hub, leverages IoT, 5G communication, and edge computing
platforms to collect and integrate multi-source information in
real time, including position deviation, temperature gradients,
and servo errors. It provides continuous data support for model
training and adaptive optimization[333]. The connection mod-
ule, as the integration hub of the system, connects heterogen-
eous models for multi-physics error modeling, serving as the
key to capturing nonlinear interactions, cross-domain depend-
encies, and transient system behaviors under dynamic machin-
ing conditions. The service module targets the final applica-
tion layer. Based on model predictions and data-driven res-
ults, it enables real-time visualization of machine tool error
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Figure 15. Integrated error modeling framework driven by digital twin[6,117,205,288,326−330]. Adapted from[6], with permission from Springer
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states, dynamic prediction, and process parameter optimiza-
tion, providing intelligent decision support for operators and
automated control systems.

The intelligent error control system established by this
integrated framework, designed for complex manufacturing
scenarios, continues to have broad expansion potential as
sensor technology, data processing capabilities, and AI meth-
ods evolve. Future research can focus on the following dir-
ections: first, introducing adaptive modeling mechanisms to

enhance the generalization and robustness of the system under
different machine types and changing working conditions;
second, optimizing data acquisition and processing to improve
the real-time responsiveness of the system, reduce control
latency, and enhance dynamic compensation capability; addi-
tionally, developing standardized interface protocols to enable
efficient data interconnection and collaboration among manu-
facturing resources, facilitating cross-platform sharing and the
upgrade of intelligent manufacturing systems.
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Figure 16. Evaluation system of integrated error modeling[334−338].

4.4.4. Model evaluation system. To standardize the pro-
cesses of model construction, evaluation, and deployment,
Figure 16 proposes a lifecycle-oriented integrated error mod-
eling evaluation index system. This system evaluates model
accuracy, real-time performance, stability, and scalability,
aligned with application scenario characteristics, providing
systematic standards for the construction, evaluation, optim-
ization, and application of integrated error models. It pos-
sesses strong engineering guidance value. Its broader applic-
ation is expected to enhance the coordination and standard-
ization of digital twin system development within industrial
enterprises and research institutions, laying a theoretical and
methodological foundation for the intelligent transformation
of manufacturing.

However, the evaluation system still faces several chal-
lenges in practical deployment, such as insufficient stand-
ardization of models, high complexity of reconstruction, and
the adaptability and compensation effectiveness of intelligent
control algorithms under complex conditions, yet to be fully
validated. Therefore, future research should focus on: mod-
ular optimization of model structures, reinforcement learn-
ing mechanisms for control algorithms, and scenario-oriented
lightweight deployment strategies. These efforts aim to con-
tinuously improve the robustness, adaptability, and sustainable
evolution capacity of the system.

5. Traceability and decoupling

In high-precision machine tool machining, error traceabil-
ity and decoupling are critical steps for identifying error
sources and understanding their formation mechanisms. Error

traceability aims to establish causal relationships between
observed errors and specific machine tool components or sub-
systems, enabling targeted improvements. Error decoupling
is used to separate intertwined error components to pre-
vent mutual amplification and cumulative degradation, allow-
ing various error compensation strategies to be efficiently
executed within subsystemswithout interference. By precisely
locating systematic errors, a solid technical foundation is
provided for formulating effective compensation and control
strategies.

5.1. The importance of traceability and decoupling

During long-term operation, machine tools are subject to the
combined influence of wear, temperature fluctuations, vibra-
tion, and other factors, inducing complex systemic errors.
Error traceability emphasizes precise tracking of error roots,
supporting targeted optimization of critical components and
process flows[36]. It covers local defects, misalignment issues,
and systematic deviations in design[38]. A thorough under-
standing of error causes aids in implementing targeted repair
and preventive maintenance, improving equipment reliability
and process stability.

Decoupling analysis aims to separate highly coupled error
sources into independent components that can be identified
and modeled separately, in order to enhance the accuracy and
efficiency of error modeling and compensation control[339].
Strong coupling commonly exists among machine tool struc-
tural deformation, thermal effects, dynamic responses, and
cutting forces. If not effectively decoupled, it will significantly
undermine the adaptability and precision of error diagnosis
and control strategies.
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In practice, error traceability and decoupling typically
rely on multimodal sensor fusion and intelligent data ana-
lysis methods[39]. Modern machine tools integrate sensors for
temperature, vibration, force, displacement, etc., to monitor
key physical variables in real time. By combining prin-
cipal component analysis (PCA), wavelet transforms, finite-
element thermal–structural coupled modeling, and machine
learning methods, error features can be effectively extrac-
ted and their causes classified and identified[37]. Effectively
implementing error traceability and decoupling significantly
enhances machine tool accuracy and product consistency,
reduces rework rates and downtime, and achieves dual optim-
ization of manufacturing cost and benefit[340,341]. Error trace-
ability and decoupling form the core support for error con-
trol in efficient, intelligent, and sustainable manufacturing
processes.

5.2. Traceability method

Machine tool errors result from the coupling of various error
sources. To accurately identify error origins and implement
effective compensation, sensitivity analysis and error budget-
ing are two key traceability techniques.

Sensitivity analysis establishes a mathematical mapping
between system inputs and error outputs, evaluating the impact
of each parameter on machine tool accuracy. It not only helps
identify key control variables in the error transmission chain—
providing data support for design optimization and compens-
ation strategies—but also quantifies error source contribu-
tions, determining the influence of system variables on overall
machine performance[342]. It provides a theoretical basis for
pre-compensation in the assembly stage and enhances feed-
forward control capability in the design phase[343].

Error budgeting systematically classifies and quantitatively
evaluates geometric, thermal, and dynamic error sources, set-
ting tolerance boundaries for each error source. This provides
decision support for tolerance design and manufacturing error
control, balancing cost and performance[109,344].

Sensitivity analysis and error budgeting each offer unique
advantages in error identification and control: sensitivity ana-
lysis is used to identify dominant variables, while error budget-
ing provides a perspective for evaluating cumulative errors.
The combination of both can systematically guide error iden-
tification and compensation throughout the entire process of
machine tool design, commissioning, operation, and mainten-
ance, significantly enhancing the relevance and effectiveness
of control strategies.

Traditional traceability methods struggle with dynamic
coupling behavior during machining processes. In con-
trast, digital twin technology—through multi-physics mod-
eling and real-time data-driven analysis—offers new solu-
tions for dynamic error traceability and compensation. It
has demonstrated advantages in thermal–force coupling,
vibration response, and material behavior modeling, espe-
cially in complex deformation prediction such as residual
stress evolution[345], plastic deformation simulation[346], and

fatigue crack propagation tracking[347]. In the future, integ-
rating dynamic traceability mechanisms within digital twin
platforms will further enhance the real-time and intelligent
levels of error modeling, promoting the development of
high-precision intelligent manufacturing.

5.3. Decoupling technology

Machine tool error sources are characterized by strong
coupling, multi-scale and multi-physics interactions, making
decoupling technologies the core support for achieving preci-
sion machining, optimizing control strategies, and enhancing
system robustness.

The goal of error decoupling is to separate error sources
under different physical mechanisms—geometric error,
thermal error, cutting force error, and dynamic error—so
they can be modeled, analyzed, and compensated independ-
ently. Traditional methods like linear regression and homo-
geneous transformation matrices (HTM) performwell in static
compensation but struggle with time-varying and nonlinear
coupling under dynamic conditions[343,344]. Recently, com-
binations of statistical analysis methods (such as PCA and
independent component analysis, ICA) and digital twin tech-
nologies offer new approaches for multidimensional error data
dimensionality reduction, decoupling, and online prediction.

PCA transforms original variables into orthogonal prin-
cipal components, helping identify and prioritize major error
sources; it is well-suited for decoupling multivariate data such
as thermal drift and position errors[348]. By contrast, ICA
decomposes multivariate signals into independent compon-
ents, effectively identifying errors caused by factors such as
thermal effects and vibration, and is especially suitable for
dynamic and nonlinear error source analysis[349]. While PCA
and ICA have significant advantages in error dimensionality
reduction and decoupling, they must still be used in synergy
with traditional physical modeling and digital twin systems
to achieve a comprehensive breakdown and precise control of
machine tool errors.

As manufacturing systems move deeply toward intel-
ligence and digitalization, error decoupling technology is
evolving from traditional “static constant-value compensa-
tion” to advanced “dynamic perception and adaptive con-
trol”. Given the different physical mechanisms of various
error sources, current research focuses on four key types: geo-
metric error, thermal error, cutting force error, and dynamic
error. Table 5 summarizes typical decoupling methods, key
technical tools, and experimental validation means for these
errors.

The research on geometric errors is shifting from static
modeling to dynamic system modeling, and solutions for
thermal errors are also upgrading from offline compensation
to real-time temperature field prediction. At the same time,
the research on cutting force errors is progressing from macro
force monitoring to micro cutting state perception, while
dynamic errors are evolving from single-frequency static cor-
rection to adaptive time-frequency domain control.
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Table 5. Decoupling techniques and engineering verification paths for typical machine tool error types.

Error type Core challenges Decoupling methods
Core technology
tools

Experimental
verification
methods Engineering value References

Geometric
error

Multi-body
coupling and
nonlinear modeling

1. Multi-body
system modeling
(HTM)
2. Modal
decoupling
(ODS +MAC)
3. Sensitivity
analysis (grey
relational analysis)

Laser
interferometer,
DBB, NURBS
surface fitting,
finite element
software
(ANSYS/LMS)

Laser tracking for
spatial geometric
error measurement,
static calibration,
3D trajectory
testing with
ball-bar

Improved
positioning
accuracy

[343,350,351]

Thermal
error

Time-varying
temperature field
coupled with
structural response

1. Error
decomposition
(spindle/rotary
table/bed
separation)
2. Optimization of
temperature-
sensitive points
(grey relational
analysis)
3. Nonlinear
modeling (NLP)

Temperature arrays
(PT100,
thermocouples),
infrared
thermography,
self-decoupling
force/torque
sensors, BP neural
networks, SVR

Thermal cycling
tests (40-day
temperature
tracking),
temperature-
deformation
mapping validation,
cutting heat drift
compensation

Suppression of
thermal
deformation

[339,352,353]

Cutting force
error

Multi-field
coupling and state
uncertainty

1. Force sensor
fusion
2. Time-frequency
domain analysis
(wavelet transform)

3. Stiffness
compensation
optimization

Self-decoupling
force/torque
sensors, MEMS
six-axis force
sensors, cutting
force prediction
models
(LSTM/Random
forest), FEM
simulation
(ABAQUS)

Cutting tests with
force-vibration
coupling, tool tip
monitoring,
material removal
rate vs. vibration
threshold testing

Extended tool life [354,355]

Dynamic
error

High-frequency
vibration and servo
lag

1. Frequency
domain decoupling
(FFT + modal
analysis)
2. Dynamic
feedforward control
(acceleration
compensation)
3. Damping
optimization
(vibration damping
devices)

Piezoelectric
accelerometers,
modal analysis
instruments (LMS),
adaptive PID
controllers, DBB
device

Modal impact
testing, vibration
spectrum analysis
during machining,
dynamic roundness
tracking

Reduced surface
roughness

[356,357]

Real-time decoupling of multi-source machining errors
faces challenges due to their nonlinear, time-varying,
and coupled properties, including high-dimensional
error source interaction, dynamic working conditions,
sensor synchronization issues, and limited computational

resources[358]. For nonlinear coupled systems and time-
varying conditions, researchers have proposed a data-
based iterative dynamic decoupling control method spe-
cifically addressing coupling errors in precision MIMO
motion systems[359]. Through the technical route of
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Figure 17. Machine tool error traceability and decoupling framework. Adapted from[351], with permission from Springer Nature. Adapted
from[357], with permission from Springer Nature. Reprinted from[362], Copyright (2025), with permission from Elsevier.

“theoretical modeling—key variable selection—error com-
ponent separation—engineering implementation”, it effect-
ively solves the problem of coupling identification between
geometric error and thermal error in machining center lin-
ear axes[339]. Digital twin technology offers new approaches
to these issues by supporting error evolution visualization,
parameter self-update, and AI-enhanced decoupling through
virtual replication and real-time synchronization, significantly
enhancing error identification and control capabilities under
complex conditions.

Therefore, researchers have proposed a digital twin–based
multi-source error decoupling framework, integrating hybrid
modeling, multi-source data perception, and multi-physics
simulation, significantly improving system error traceabil-
ity and control accuracy[360,361]. As shown in Figure 17,
this framework comprises five main levels: (1) data acquisi-
tion layer, combining ODS modal decoupling, laser tracking,
and multi-point sensors for high-quality dynamic error data
collection[343,350,354]; (2) error classification layer, using PCA
and wavelet transforms for signal dimensionality reduction
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and feature extraction to enhance error pattern separation
accuracy[353,356]; (3) error-source localization layer, integ-
rating finite-element thermal–structural coupled simulation
and laser tracking techniques for quantitative identification
and physical-position pinpointing of error sources[351,357]; (4)
model decoupling layer, where multi-source sensor fusion
is key for real-time error traceability and decoupling. By
collecting complementary information across thermal, force,
vibration, and other physical domains, and using hierarch-
ical sequential memory and nonlinear regression modeling,
a robust time-varying error model is constructed to enhance
generalization ability and online modeling capability[339,352];
(5) real-time compensation layer, constructing a closed-
loop control system via digital twin as the carrier, integ-
rating feedforward correction and feedback compensation
mechanisms to achieve dynamic suppression of system-level
errors.

This framework provides theoretical support and an engin-
eering paradigm for error traceability and adaptive con-
trol under complex working conditions, optimizing system
dynamic response and steady-state accuracy, and laying the
foundation for high-precision operation in intelligent manu-
facturing systems[363].

6. Error prediction

In recent years, data-driven prediction methods based on
massive historical data and real-time sensor signals, as well
as hybrid prediction strategies that integrate physical model-
ing with data analysis, have become key approaches to enhan-
cing machine tool performance and enabling intelligent manu-
facturing. Error prediction focuses on forecasting future error
trends based on current operating conditions, sensor feed-
back, and historical data. The goal is to enable feedforward
intervention—actively controlling the process before errors
affect critical dimensions—thereby improving the stability of
the machining process.

6.1. Data-driven prediction method

The data-driven prediction method utilizes historical data and
real-time signals to capture the complex variation patterns
in machine tool operation, enabling efficient error predic-
tion and real-time monitoring. Inspired by the interconnected
structure of brain neurons, artificial neural networks (ANN)
excel at describing nonlinear relationships between inputs and
outputs, and are widely used for the prediction of thermal
and geometric errors[364−366]. By training on historical pro-
cessing data and sensor signals such as temperature and vibra-
tion, the ANN model can dynamically update its paramet-
ers, improving the prediction accuracy for various types of
errors[367]. Support vector machines (SVM) construct optimal
hyperplanes to effectively distinguish complex error patterns
in high-dimensional spaces, making them particularly suitable

for scenarios with complex data categories and mixed error
patterns[368]. SVMs have significant advantages in capturing
subtle changes in machine tool operation, enabling the detec-
tion of minute patterns that may precede specific errors.

By combining ANN, SVM, and IoT technology, the real-
time performance and accuracy of error prediction can be
further enhanced[369]. The IoT system collects real-time data
such as temperature, vibration, and cutting force, and predicts
and compensates for CNCmachining trajectory errors through
hybrid model processing. With an online learning mechanism,
the prediction model iteratively updates as new data is input,
gradually identifying more complex error patterns and con-
tinuously improving prediction accuracy[322]. This adaptive
optimization not only effectively reduces error rates but also
minimizes unplanned downtime through intelligent mainten-
ance strategies, facilitating the development of manufacturing
toward higher efficiency and intelligence[370].

In summary, data-driven methods such as ANN and SVM
have made significant breakthroughs in the field of machine
tool error prediction. These methods not only enable real-time
monitoring and early warning of errors but also dynamically
adapt to complex operating conditions, reducing production
costs, enhancing system reliability and product quality, and
driving the manufacturing industry toward greater intelligence
and efficiency.

6.2. Physical-driven prediction method

The physics-driven prediction method provides a theoretical
basis for error traceability and compensation by analyzing the
response of machine tool structures under mechanical loads
and thermal boundary conditions. Key technologies include
finite element analysis (FEA), thermo-mechanical coupling
simulation, and their integrated applications. These methods,
combined with material properties and real-time monitoring,
enable a comprehensive prediction process from design optim-
ization to online control.

FEA discretizes complex structures into computational ele-
ments, simulating stress–deformation behavior under varied
loads, constraints, and thermal effects. It precisely evaluates
how component interactions affect overall accuracy and is
well-suited for structural optimization and error prediction in
high-precision machine tools[371]. Vibration instability (such
as chatter) during machining is a key challenge in precision
manufacturing. To predict chatter stability under various cut-
ting conditions, researchers have developed numerous stabil-
ity lobe diagrams (SLDs)[372]. For parallel or hybrid machine
tools, consideration of passive node stiffness variation under
load led to a structural dynamics model that reveals modal
response behavior, achieving more accurate stability limit pre-
dictions for parallel tool heads in thin-wall machining[373].
Additionally, in milling thin-wall workpieces where mater-
ial removal induces time-varying dynamics, a dual reduction
strategy (“substructure partitioning + free interface” method)
and boundary degree-of-freedom elimination overcame low
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computational efficiency and boundary-dependence issues of
traditional methods[374].

Thermo-mechanical coupling analysis focuses on the
impact of temperature-induced thermal expansion, contrac-
tion, and associated mechanical stresses on machine tool
accuracy[375]. Through multi-physics field simulation, it
can dynamically predict the evolution of thermal errors
during the machining process[344]. Combining FEA with
thermo-mechanical coupling analysis enables the construc-
tion of a multidimensional, comprehensive error prediction
system[360,376,377]. The differences in thermal expansion coef-
ficients, elastic moduli, and thermal conductivities of differ-
ent materials directly affect the evolution of machine tool
errors[378]. For example, cast iron, with its high thermal sta-
bility, is commonly used for manufacturing high-precision
machine tool beds, while lightweight materials such as alu-
minum alloys or carbon fiber composites, although reducing
weight, require additional temperature compensation due to
their higher thermal expansion coefficients. Ceramic guides,
known for their low friction and high thermal conductivity, are
used to reduce thermal deformation[72]. Therefore, physics-
based prediction methods must incorporate material charac-
teristics and customize simulation parameters to improve the
accuracy of error predictions.

By integrating IoT and intelligent sensing systems, real-
time data such as temperature, vibration, displacement, and
cutting force can be collected and fed back into the phys-
ical model, enabling dynamic prediction and error correc-
tion. Feedback loops based on machine learning techniques,
such as random forests, further enhance the online correc-
tion of thermal errors and the optimization of machining
parameters[233].

Physics-driven methods provide solid support for error
traceability, design optimization, and real-time compensa-
tion by deeply revealing the interactions among mechanical
stresses, thermal effects, and material properties. With the
ongoing advancements in computational and sensing techno-
logies, the integration of data-driven optimization will accel-
erate the development of high-precision, intelligent manufac-
turing systems.

6.3. Hybrid prediction method

The physics-driven approach reveals the interactions among
thermal, force, and structural effects, offering good inter-
pretability and extrapolation, but it requires significant com-
putational resources and is hard to update online. Data-driven
methods excel at capturing nonlinear features from sensor
data, making them effective for anomaly detection in dynamic
conditions, but they struggle to generalize to new conditions.

The hybrid framework combines both approaches, achiev-
ing high fidelity and adaptability for accurate prediction
and real-time compensation of multi-source errors[61]. For
example, in the context of thermal error modeling, research-
ers improved the performance of BP neural networks by
adjusting the inertia weight coefficient in the particle swarm
optimization algorithm and introducing an S-shaped function

to enhance the backpropagation process. This significantly
improved prediction accuracy, reaching 96.5%[367]. In addi-
tion, for fault diagnosis of spindle systems, physical models
such as bearing wear and imbalance were embedded into a
digital twin-based spindle simulation. The simulated data were
used to train a GRU network, which was then fine-tuned with
a small amount of experimental data, achieving a fault local-
ization accuracy of 97.6%, significantly outperforming purely
physical or purely data-driven models[379].

As shown in Figure 18, the hybrid prediction based
on digital twins achieves deep integration of mechanism
constraints and data-driven methods by constructing a bi-
directional mapping between the physical and virtual systems.
The process includes multi-physical data synchronization and
filtering, feature extraction, joint modeling, and edge deploy-
ment to enable millisecond-level dynamic error correction and
closed-loop control. This method has been widely applied in
predicting geometric, thermal, and dynamic errors[364,380,381],
and has shown excellent scalability in fields such as aerospace,
high-speed cutting, and full-life-cycle health management.
Current research is focused on time-series neural networks
and multi-scale feature modeling to further enhance system
response speed and prediction accuracy[322]. For example, in
CNC milling processes, researchers combine power/cutting
force predictions from physical models with residual signals
from incremental data-drivenmodels (such as decision trees or
neural networks), and apply CUSUM (Cumulative Sum) test-
ing for anomaly detection. Under a 1% noise background, this
approach achieved a detection accuracy of 92%, effectively
reducing false alarm rates[382]. In addition, to address sample
scarcity and distribution mismatch in thermal error modeling,
researchers used high-fidelity physical models to generate syn-
thetic data. This was combined with a distance-guided domain
adversarial network and maximum mean discrepancy (MMD)
metrics to enable cross-domain transfer learning of thermal
error data, achieving an 11.73% improvement in goodness of
fit. This method proves suitable for high-accuracy prediction
under small-sample conditions[40].

Despite significant progress in hybrid prediction methods,
several challenges persist in actual dynamic machining envir-
onments. Firstly, rapidly changing machining parameters and
highly coupled error sources increase the complexity of mod-
eling. Secondly, multi-source sensor data may suffer from
temporal asynchrony and unobservable latent variables, which
raise model uncertainty. Furthermore, adaptive update mech-
anisms can be disturbed under abrupt operating conditions,
and high computational loads limit system response speed.
Therefore, achieving stable and efficient real-time prediction
still requires continuous breakthroughs in modeling accuracy,
data synchronization, and computational efficiency.

Future work should develop an integrated architecture com-
bining mechanistic modeling, data-driven approaches, and
intelligent decision-making; leverage nano-scale monitoring,
distributed digital twins, and explainable AI; improve model
transparency and adaptivity; overcome bottlenecks in real-
time prediction and intelligent control; and accelerate practical
deployment on the factory floor[385,386].
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Figure 18. Research progress of error prediction[383,384]. Reprinted from[384], Copyright (2023), with permission from Elsevier.

7. Compensation strategy

Error compensation employs adaptive feedback control mech-
anisms to make real-time corrections by dynamically adjust-
ing servo parameters, thermal control systems, or tool paths.
This module directly determines the final machining accuracy,
aiming to minimize dimensional errors, surface defects, and
stability fluctuations.

7.1. Geometric error compensation

Machine tool geometric errors are a key factor affecting
machining accuracy. To ensure product quality, efficient

compensation strategies must be adopted. Currently, error
mapping and real-time compensation technologies are widely
used and continuously evolving, forming the core of geometric
error control.

Error mapping techniques systematically measure and
quantify multi-dimensional geometric errors of machine tools,
such as linear positioning error, angular error, straightness
error, and perpendicularity error[387]. Common measurement
devices include laser interferometers, ball bar instruments, and
coordinate measuring machines, which generate error distri-
bution maps that support error modeling and compensation.
Thesemaps not only reveal the spatial distribution of errors but
also provide a basis for targeted compensation strategies[388].
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Given that errors evolve over time due to mechanical wear
and temperature changes, it is necessary to periodically update
these maps to ensure the effectiveness of compensation.

On the basis of mapping, real-time compensation tech-
niques enable dynamic error control. By deeply integrat-
ing error models with CNC systems, these technologies can
acquire machine status in real time and perform error predic-
tion, then dynamically adjust tool paths or process paramet-
ers. For example, an online surface metrology system based
on an optical slope sensor can provide error feedback and
synchronize parameter adjustment during precision grinding,
effectively reducing form errors[389]. Achieving efficient real-
time compensation requires high-resolution sensors, high-
performance CNC systems, and integrated predictive models
andAI algorithms to enhance error prediction and feedforward
control capabilities.

Spatial error compensation algorithms within CNC sys-
tems, such as pitch error compensation and sag compensa-
tion, have been widely applied in industry. Pitch compensa-
tion is primarily used to correct axial positioning errors, while
sag compensation addresses non-axial deformations of the
machine structure caused by gravity. The synergistic effect
of these two methods effectively enhances the spatial motion
accuracy of machine tools. By integrating error mapping with
real-time compensation techniques, not only can machin-
ing accuracy and repeatability be significantly improved, but
the application scope can also be extended—from three-axis
machines to five-axis systems[234].

With the advancement of vision measurement and intel-
ligent calibration technologies, geometric error compensa-
tion is becoming more intelligent. Combining high-resolution
CCD cameras with sub-pixel image processing makes error
quantification more intuitive. The error calibration system
based on CCD visual measurement and global image regis-
tration can precisely calibrate the geometric errors of the two-
dimensional precision platform and achieve nanometer-level
positioning compensation[390]. Additionally, self-calibration
systems based on laser galvanometer scanning, combined
with Kalman filtering and machine vision, have successfully
reduced positioning error to±1 µm, verifying the potential of
intelligent algorithms in high-precision error control[391].

In summary, error mapping and real-time compensation
represent a deep integration of traditional precision measure-
ment and modern intelligent control and remain the core dir-
ection of geometric error control. However, achieving efficient
real-time compensation in high-speed, multi-axis systems still
faces technical challenges: adaptive compensation modules
must handle continuous changes in axial speed and acceler-
ation under complex trajectories, ensuring dynamic match-
ing of correction amounts and continuous motion without
exciting structural resonances; current industrial control-
lers also lack sufficient parallel computation power to sup-
port six-degree-of-freedom error compensation, servo con-
trol, thermal drift correction, and dynamic error suppres-
sion simultaneously. With the ongoing development of high-
performance sensors, edge computing platforms, and AI, geo-
metric error compensation is expected to advance toward

higher intelligence, integration, and precision—promoting
sustained precision retention in high-end manufacturing.

7.2. Thermal error compensation

Thermal errors in machine tools mainly arise from structural
thermal expansion and uneven temperature gradients during
operation, directly causing relative pose shifts between the tool
and workpiece. While thermal symmetry design, insulating
materials, and thermal equilibrium layouts can partially mitig-
ate thermal effects, the physical nature of heat conduction and
material expansion makes complete elimination impossible.
Therefore, thermal error compensation is key to maintaining
machining accuracy.

Early thermal error compensation relied on mechanical
rigidity correction—such as the pitch correction screw bar
used in the 1950s—that addressed a single error source
through static correction and lacked adaptability[392]. With
CNC development, coordinate-offset-based thermal error
compensation became mainstream, introducing corrective dis-
placements in CNC commands to economically and effect-
ively negate thermal errors online[393]. Current compensa-
tion schemes typically follow three core steps: modeling/pre-
diction, measurement-point optimization, and real-time com-
pensation, emphasizing the synergistic optimization of mod-
eling accuracy and online responsiveness.

In modeling and prediction, existing methods fall into
two categories: empirical statistical models and physics-based
models. Empirical models using least-squares fitting and mod-
ular compensation systems can achieve high predictive accur-
acy and good system compatibility[394]. Self-organizing fea-
ture maps and improved particle-swarm-optimized neural
networks can enhance nonlinear fitting and generalization
performance in thermal error modeling[367]. In contrast,
physics-based models grounded in heat conduction prin-
ciples and material thermodynamics more authentically cap-
ture thermal field distribution and induced deformation effects.
For example, dynamic modeling and compensation meth-
ods from a system-identification perspective can eliminate
pseudo-hysteresis influences in traditional models and have
been validated by spindle testing[395]. A piezo-driven real-
time thermal error compensation system for spindle transient
thermal elongation enables closed-loop control under high-
speed rotation[396].

Measurement-point optimization is crucial for improving
model efficiency and prediction stability. Correlation ana-
lysis identifies key measurement points strongly related to
thermal errors, reducing data redundancy. Techniques such
as direct criterion and indirect grouping can compress input
variable counts, reduce mutual coupling, and shorten mod-
eling time[397]. Analyzing sensitivity variation of temper-
ature points with operating conditions and applying prin-
cipal component regression can mitigate multicollinearity
and further improve prediction accuracy and compensa-
tion performance[398]. Greyscale relevance models optimizing
measurement layouts can reduce temperature inputs from 16
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to 4 points, ensuring modeling accuracy and enhancing com-
putational efficiency[399].

Real-time compensation requires high-speed data acquisi-
tion and dynamic control. Integrating temperature and vibra-
tion sensors into self-optimizing machining systems allows
dynamic adjustment of feed rate and cutting parameters
based on real-time conditions, effectively reducing coupling
between thermal errors and mechanical wear[68]. Applying
machine learning for online thermal error prediction on five-
axis machine tools and combining it with error mapping to
correct tool paths in real time can reduce machining errors
by 85%[233]. Active thermal control plates combined with
model-driven power-matching strategies also provide effect-
ive means for managing thermal distribution and enhancing
thermal stability.

Despite significant progress in current research, thermal
error compensation still faces several challenges: first, the
rapid identification of thermally sensitive measurement points
in complex structures and poor dynamic adaptability; second,
the need for further research to develop predictive models
with strong robustness and generalization capabilities; third,
the integration mechanisms of multi-physics field simulations
and models are not yet mature; fourth, balancing computa-
tional complexity and model accuracy while ensuring real-
time performance; and fifth, the trade-off between compens-
ation system implementation cost and industrial adaptability
needs to be addressed. Systematic research on these issues will
provide key technical support for achieving high-precision and
high-efficiency machine tool thermal error compensation and
thermal management.

7.3. Dynamic error compensation

To achieve high machining accuracy and stability, dynamic
error compensation technologies increasingly focus on vibra-
tion suppression, adaptive control, and model-based closed-
loop correction, emphasizing real-time error perception and
rapid response capability.

Vibration suppression methods include passive and active
strategies. Passive methods use dampers and isolating struc-
tures to reduce vibration transmission without complex con-
trol systems. Examples include integrating hydraulic dampers
to significantly suppress spindle–workpiece resonance and
improve stability in titanium alloy machining[400]; using mag-
netorheological dampers to control chatter in flexible work-
pieces with good adaptability for small-batch, multi-variety
production[401]; and optimizing viscoelastic damper paramet-
ers based on fractional-order derivative models to suppress
low-frequency residual vibration, reducingmachining error by
60%[402].

Active vibration suppression builds a closed-loop feedback
system with sensors and actuators to monitor vibrations in
real time and apply counterforces, offering higher response
speed and adaptability. For instance, combining acceleromet-
ers with servo drives and using feedforward control to dynam-
ically adjust feed rate can suppress cutting force fluctuations
by 50% and significantly extend tool life[403]. While active
systems are more costly and complex, their advantages make

them indispensable for improving machining precision and
stability in high-end manufacturing.

Adaptive control technology dynamically adjusts machin-
ing strategies by online sensing of working condition para-
meters such as thermal deformation, load variations, and
vibrations, thereby enhancing machining consistency and
robustness[404]. In multi-axis simultaneous machining, to
address contour errors caused by servo lag, inter-axis syn-
chronization errors, and dynamic structural deformation,
researchers have proposed various real-time compensation
schemes. For example, a control method based on trajectory
geometry analysis and axis decoupling design avoids the com-
plexity of traditional Jacobian inversion operations and effect-
ively suppresses control chatter[405].

In recent years, model-driven control methods have gradu-
ally become dominant in dynamic error compensation. By
constructing machine tool dynamic models and error predic-
tion algorithms, real-time correction ofmachining paths can be
achieved. For example, using model error compensation com-
bined with an Efficient Contour Estimation Algorithm (ESA)
can reduce the maximum contour error of five-axis machine
tools by up to 66.8%[406]. For thin-walled part machining,
a multi-channel predictive compliance model incorporating
residual stress monitoring enables the coordinated optimiza-
tion of tool paths and cutting parameters, significantly sup-
pressing deformation[407].

AI andML integration bring new breakthroughs to dynamic
error compensation. Deep learning models can mine error
evolution patterns from historical data and enable early warn-
ing and adaptive correction. For example, combining LSTM
networks with system identification to build iterative error pre-
diction and compensationmechanisms improvedmodel accur-
acy and computation efficiency in five-axis machining[408].
Digital twin-based compensation systems that fuse cutting
force, temperature, and multi-source data enable dynamic
parameter optimization and enhance deformation control for
complex structural parts[326].

In summary, dynamic error compensation is evolving
from traditional static control to multi-level closed-loop sys-
tems that integrate model-driven, data-driven, and intelligent
algorithmic methods. Going forward, leveraging advanced
sensors, intelligent control algorithms, and edge computing
platforms, this technology will play a central role in ensur-
ing machining accuracy and system stability, providing a solid
foundation for intelligent manufacturing.

7.4. Integrated error compensation system

With the ongoing rise in high-precision manufacturing
requirements, traditional error compensationmethods that rely
on single sensors or empirical models can no longer cope
with the challenges posed bymulti-source error coupling, non-
linearity, and time-varying behavior. As a result, developing
integrated error compensation systems with real-time sensing,
dynamic modeling, and closed-loop control capabilities has
become a key trend in precision manufacturing.

Modern integrated systems combine high-precision
sensors, edge computing platforms, and multi-source
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modeling methods to enable full-lifecycle error manage-
ment and dynamic optimization. The integration of measure-
ment and compensation supports dynamic calibration tech-
niques, providing robust support for long-term high-precision
operation[409].

As shown in Figure 19, the integrated error compensation
architecture summarized in this paper includes core modules
such as multi-source error sensing and real-time data fusion,
multi-source errormodeling and prediction, dynamic feedback
and closed-loop control, as well as real-time compensation and
visualization. This architecture relies on a digital twin plat-
form to achieve dynamic synchronization between the phys-
ical entity and its virtual model, thereby enabling predictive
and feedforward error compensation mechanisms.

Compared with traditional systems, this architecture places
greater emphasis on coordinated regulation among error
sources and real-time interaction among system modules.
For example, by jointly modeling differential models and
thermal imaging, and applying a weighted least squares fusion
strategy, residual errors were reduced to 0.3µm—significantly
outperforming the results of single-model approaches[414].
Under complex working conditions, a physical-statistical
hybrid model has been used to realize stepwise thermal
error compensation[415]. Furthermore, by integrating tool rota-
tion error, geometric error, and cutting-force-induced elastic
deformation, surface roughness prediction error can be effect-
ively controlled through point cloud analysis and closed-loop
sensor feedback[416].

In addition, for thermal error modeling under multiple heat
sources, researchers have adopted a combination of improved
Dempster–Shafer (D-S) evidence theory and radial basis func-
tion (RBF) neural networks, achieving a prediction accuracy
as high as 98.8%[417]. For comprehensive compensation of
dynamic and static errors, related studies have shown that
static errors can be transmitted through differential motion
matrices, while dynamic errors are corrected online using
machine learning models, thereby constructing a high-fidelity
digital twin compensation core[49].

The system integrates multi-source signals such as spindle
temperature, servo current, cutting force, and structural vibra-
tion, enabling real-time adjustment of key parameters (e.g.,
thermal expansion coefficient, stiffness matrix), and imple-
ments fast response and model optimization through a hier-
archical feedback mechanism: the fast layer achieves sub-
millisecond response, while the slow layer performs strategy
correction and adaptive updates. In the face of abnormal
conditions such as tool breakage or sensor drift, the sys-
tem can automatically trigger self-calibration procedures to
maintain robustness and stability. For example, servo lag
and contour error compensation algorithms can adaptively
adjust to balance tracking accuracy and vibration suppression
performance.

In recent years, hybrid modeling and ensemble learn-
ing have been widely applied to contour error prediction
and compensation, effectively addressing precision problems
caused by data sparsity and insufficient real-time perform-
ance in commercial CNC systems[34]. Meanwhile, the com-
posite method combining offline pre-compensation and online

feedback control has effectively overcome the bottlenecks of
real-time and accuracy in five-axis machining contour error
control[418].

With the development of the IoT and edge computing,
integrated compensation systems are rapidly evolving toward
interdisciplinary integration and intelligence. These systems
not only provide continuous state monitoring and adaptive
maintenance capabilities, but also enable dynamic adjust-
ment of machining parameters and self-optimization control,
thereby supporting high-precision operation of machine tools
throughout their entire life cycle[229,419].

At present, integrated compensation strategies have been
widely applied across multiple dimensions, including geo-
metric error, thermal error, cutting-force error, contour error,
and time-varying error[41,322,326]. For instance, by establish-
ing dynamic feature models of thin-walled parts, research-
ers obtained real-time correlations among workpiece stiffness,
geometric state, and milling force. Based on this, a real-time
compensation method for deformation error was proposed,
which controlled workpiece thickness error within 10%[420].
Meanwhile, the GTF method that combines grey relational
analysis, thermal sensitivity analysis, and fuzzy C-means
clustering significantly reduced collinearity and information
loss risks in thermal error modeling of multi-heat-source
machine tools. Experiments showed that the average reduc-
tions in root mean square error were 28.0% and 25.8%,
respectively, demonstrating strong generality and compensa-
tion performance[421].

Driven by AI systems, sensing and modeling technolo-
gies for real-time multi-source error compensation have seen
continuous breakthroughs. A novel thermal error sensing
system, which combines non-contact temperature measure-
ment and principal component analysis, has achieved sub-
micron control accuracy for the Z-axis thermal error of the
spindle, providing a theoretical foundation and technical sup-
port for self-sensing and self-compensation in intelligent
machine tools[417]. In addition, researchers have constructed
a hybrid-model-based CNC digital twin framework, using AI
algorithms to achieve trajectory error prediction and adapt-
ive compensation, validating the feasibility and effectiveness
of this method in terms of prediction accuracy and control
performance[322].

The integrated compensation system demonstrates sig-
nificant advantages in multidimensional error management
through dynamic prediction and real-time control. Based on an
interactive spatio-temporal graph convolutional network (ST-
GCN) and a cloud-edge collaborative digital twin architec-
ture, the system efficiently fuses temporal and spatial error
information, achieving an optimal balance between micron-
level compensation accuracy and millisecond-level response
speed. Compared to traditional LSTM and Transformer mod-
els, this system improves prediction accuracy by 76%–88%,
reaches a model fitting degree (R2) of 98.7%, and reduces
machining errors by an average of about 90%[422]. In hybrid
models, physical models are used for data preprocessing or
setting constraints[423], while machine learning, deep learn-
ing, and transfer learning are used for real-time parameter
adjustment[424,425]. In industrial applications, hybrid models
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are used to adjust machine tool operations based on sensor
data for real-time compensation, thus improving machining
accuracy[426,427].

Another study combined a TCN-BiLSTM model with a
G-code interpreter to build a customized compensation sys-
tem capable of predicting X- and Y-axis tracking errors,
achieving mean absolute errors as low as 0.000 009 mm and
0.000 023 mm, respectively. In complex trajectory machin-
ing (e.g., circular and heart-shaped paths), the system reduced
axial errors by 45%–75% and 40%–70%, respectively, sig-
nificantly enhancing dynamic control performance in ultra-
precision machining. A cloud-training–edge-inference struc-
ture enabled millisecond-level response, and the system
demonstrated robustness and industrial scalability across 12
transfer tests[409].

AI algorithms can identify residual errors and dynamic-
ally adjust compensation parameters to cope with tool wear
and thermal load changes. Big data technologies mine his-
torical machining information to reveal error evolution pat-
terns. Digital twins integrate virtual simulation with real-time
feedback to achieve error prediction and pre-compensation,
thereby enhancing overall system performance.

However, intelligent compensation still faces challenges
such as managing heterogeneous high-frequency data, lim-
ited model generalization capabilities, high complexity in
cloud-edge coordination, poor model interpretability, and a
lack of standardized interfaces. Future research should focus
on optimizing algorithms and system architecture, promoting
standardization, and accelerating the engineering application
of intelligent compensation in precision manufacturing.

In summary, the development of integrated error com-
pensation systems needs to advance in the following direc-
tions: construct open and high-performance CNC platforms
with standardized interfaces to enhance system compatibil-
ity and scalability; integrate data from multiple axes, tools,
and materials to establish a multi-source modeling framework
with generalization capability; optimize modeling and control
algorithms to strengthen real-time performance and robust-
ness; deepen the integration of software and hardware, pro-
mote industrial demonstration applications, and accelerate the
real-world deployment of intelligent compensation systems.

8. Conclusions

Current research on machine tool error control mostly focuses
on modeling and compensating for single error sources,
lacking systematic integration and engineering solutions that
address nonlinear coupling, dynamic evolution, and closed-
loop regulation of multi-source errors. To fill this gap, this
paper constructs a systematic multi-source error evaluation
framework for machine tool accuracy retention, covering the
entire process of error identification, modeling, traceabil-
ity and decoupling, prediction, and compensation. An integ-
rated control architecture centered on digital twins and AI
is developed, featuring online sensing, integrated modeling,
adaptive prediction, and closed-loop compensation capabilit-
ies, achieving full-process optimization from error perception

to compensation execution. The study shows that integrated
strategies significantly improve the accuracy and response
speed of error management, providing critical support for
design optimization, accuracy assurance, and intelligent oper-
ation and maintenance of high-end manufacturing equipment.

Firstly, this work systematically classifies and quantitat-
ively evaluates various errors based on their formation mech-
anisms and key influencing factors, clarifying the dominant
error sources. By combining measurement methods such as
laser interferometers, ball bars, and vision systems, the per-
formance differences between online and offline measurement
technologies regarding real-time capability and environmental
adaptability are compared, emphasizing the practical value of
intelligent systems in improving evaluation effectiveness in
industrial scenarios.

In errormodeling, a systematic review is given of geometric
errors based on homogeneous transformation and screw the-
ory models, thermal errors using empirical and physical mod-
eling methods, and dynamic errors through modal analysis
and transfer function approaches. It is pointed out that tradi-
tional methods have limitations in real-time performance and
generalization under high-speed and heavy-load conditions.
Therefore, this paper focuses on integrated modeling methods
that fuse physical modeling with data-driven approaches based
on intelligent systems. This method achieves dynamic updat-
ing and high adaptability of error models through multi-source
data fusion and virtual-physical synchronization mechanisms,
improving modeling accuracy and robustness under complex
operating conditions.

Regarding traceability and decoupling of multi-source
coupled errors, this paper reviews multivariate statistical ana-
lysis methods such as PCA and ICA, as well as sensitivity ana-
lysis and error budgeting strategies, enabling effective iden-
tification of key error sources and separation of their action
paths, thus providing theoretical support for key factor extrac-
tion and optimization.

In error prediction, artificial neural networks, support
vector machines, finite element simulation, and thermo-
mechanical coupled modeling strategies are compared. It is
noted that pure physical models are limited by modeling com-
plexity and real-time response, while data-driven methods
may face issues of poor generalization. The paper summar-
izes hybrid prediction methods that integrate prior physical
models with data-driven optimization mechanisms, which not
only enhance the dynamic simulation ability of error evolution
under different working conditions but also improve model
adaptability and prediction accuracy, providing decision sup-
port for proactive maintenance and process adjustment.

In error compensation and control, typical methods such as
pitch error compensation, real-time coordinate correction, act-
ive temperature control, vibration suppression, and adaptive
control are summarized. The paper highlights intelligent com-
pensation systems that integrate AI and digital twins. These
systems enable closed-loop detection and dynamic control of
multi-source errors, significantly improving machining accur-
acy and dynamic stability of machine tools.

Particularly, this paper emphasizes the key role of
digital twins in the entire error control process. Through
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virtual-physical synchronization, multi-source sensing, and
AI adaptive mechanisms, an intelligent control framework
supporting full lifecycle management is constructed, promot-
ing the shift of error control from “passive compensation” to
“active optimization”.

In summary, the multi-source error evaluation and control
system constructed in this paper possesses real-time capabil-
ity, adaptability, and scalability, providing technical support
for accuracy assurance, stable operation, and intelligent main-
tenance of high-end manufacturing equipment. Looking for-
ward, with the continuous advancement of intelligent man-
ufacturing technologies, this integrated strategy will play an
increasingly critical role in achieving ultra-precision con-
trol, extending equipment lifespan, and improving production
efficiency, thereby facilitating the autonomous controllabil-
ity and sustainable development of high-end manufacturing
equipment.

9. Challenges and prospects

Although rapid evaluation and compensation technologies for
machine tool accuracy retention have made continuous pro-
gress in recent years, due to the system’s high coupling and
complexity, multi-source errors generally exhibit strong non-
linearity, dynamic variation, and multi-scale coupling charac-
teristics. Existing methods still face the following key chal-
lenges in engineering practice:

First, the dynamic adaptability of high-fidelity multi-
physics modeling is insufficient. Current error modeling
often relies on simplified assumptions, making it difficult
to accurately characterize nonlinear coupled behaviors such
as thermal-mechanical-dynamic interactions under real work-
ing conditions, especially in complex tool-workpiece-fixture
systems. Meanwhile, models have poor adaptability to new
structures and control systems and are prone to failure with
changing conditions. Although hybrid modeling integrates the
advantages of physical and data-driven approaches, it is still
limited by high computational costs and insufficient model
generalization capability, making continuous online learning
and adaptive updating difficult to achieve.

Second, high-frequency sensing and real-time processing
capabilities remain inadequate. Although high-precision
sensors can acquire rich state information, high-frequency
and multidimensional data pose stringent requirements on
edge-cloud collaborative architectures, network bandwidth,
and computing resources. Achieving millisecond-level pre-
processing, multi-source fusion, and error identification in
resource-constrained environments remains a technical bot-
tleneck for improving online compensation accuracy and
stability.

Third, there is a lack of unified standards for error eval-
uation and compensation. Currently, no standardized system
exists for measurement references, evaluation metrics, and
implementation procedures, resulting in poor comparability
among different methods and limited cross-platformmigration
and engineering applications. It is urgent to establish unified
and generalizable error evaluation and control specifications.

Facing the future development of intelligent manufactur-
ing, machine tool error management is rapidly advancing
toward a new stage of “multi-technology integration—virtual-
physical collaboration—closed-loop optimization”. As shown
in Figure 20, to overcome the above bottlenecks, future
research should focus on the following eight directions:

(1) AI-driven intelligent modeling and adaptive compensa-
tion: build predictive models with generalization capab-
ility and physical interpretability based on deep learn-
ing, transfer learning, and reinforcement learning, mining
multi-source error information; realize real-time control
and accuracy maintenance under complex working con-
ditions through intelligent strategies.

(2) Deep integration of sensors and the IoT: deploy highly
responsive perception modules at the machine tool edge to
achieve sub-millisecond error detection; combine cloud-
based model training and strategy updates to construct
an integrated perception-decision-execution intelligent
closed-loop system.

(3) Cross-disciplinary integration promoting innovation in
error control models: integrate multi-physics modeling
and experimental validation of geometric, thermal, force,
and dynamic fields, combined with data-driven meth-
ods, to systematically reveal error coupling and propaga-
tion mechanisms, constructing high-fidelity model sys-
tems adaptable to the full lifecycle and capable of online
updating.

(4) Application of new materials and advanced manufactur-
ing processes: utilize low thermal expansion, high wear-
resistant materials, and additive manufacturing processes
to reduce structural deformation and wear errors at the
source, enhancing machine tool stability and longevity.

(5) Standardized error evaluation and compensation pro-
tocols: establish unified standards for error identifica-
tion, evaluation, and compensation to promote cross-
platform and cross-machine general implementation spe-
cifications, improving system compatibility and techno-
logy transferability.

(6) Development of highly integrated and intelligent systems:
combine multi-physics simulation, hybrid modeling, and
intelligent optimization technologies to build closed-loop
accuracy assurance systems with self-perception, self-
learning, and self-adjustment capabilities, achieving goal-
oriented active regulation.

(7) Multi-source data fusion and edge-cloud collaborative
control: introduce advanced algorithms for deep fusion
of heterogeneous data such as temperature, displacement,
and vibration; enable rapid response at the edge and optim-
ized decision-making in the cloud to enhance system
robustness and generalization.

(8) Cross-platform collaboration and human-machine inter-
action: promote system deployment in small and medium-
sized manufacturing enterprises based on standard-
ized interfaces and low-cost sensors; build efficient
and user-friendly human-machine collaboration modes
through visualization interfaces and intelligent interaction
technologies.
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Figure 20. Prospects for research on multi-source errors of machine tools.

In summary, machine tool accuracy retention technology
is progressing toward “multi-source fusion, virtual-physical
collaboration, real-time response, and autonomous optimiza-
tion”. Relying on key technologies such as digital twins, AI,
and edge-cloud computing, it is expected to build an intelli-
gent error management system oriented to the full lifecycle,
empowering high-quality and intelligent manufacturing.
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