
International Journal of Extreme Manufacturing

TOPICAL REVIEW • OPEN ACCESS

Integration of AI with artificial sensory systems for
multidimensional intelligent augmentation
To cite this article: Changyu Tian et al 2025 Int. J. Extrem. Manuf. 7 042002

 

View the article online for updates and enhancements.

You may also like
3D printing of hard/soft switchable
hydrogels
Guofeng Liu, Pengcheng Xia, Weicheng
Kong et al.

-

Advances in memristor based artificial
neuron fabrication-materials, models, and
applications
Jingyao Bian, Zhiyong Liu, Ye Tao et al.

-

Advanced approaches to decoupled
sensory signal monitoring in human
interface systems
Se Gi Lee, Ki Jun Yu, Sang Min Won et al.

-

This content was downloaded from IP address 118.123.172.210 on 01/04/2025 at 08:11

https://doi.org/10.1088/2631-7990/adbd98
/article/10.1088/2631-7990/adbd97
/article/10.1088/2631-7990/adbd97
/article/10.1088/2631-7990/acfcf1
/article/10.1088/2631-7990/acfcf1
/article/10.1088/2631-7990/acfcf1
/article/10.1088/2631-7990/adbc4e
/article/10.1088/2631-7990/adbc4e
/article/10.1088/2631-7990/adbc4e


International Journal of Extreme Manufacturing

Int. J. Extrem. Manuf. 7 (2025) 042002 (20pp) https://doi.org/10.1088/2631-7990/adbd98

Topical Review

Integration of AI with artificial sensory
systems for multidimensional intelligent
augmentation

Changyu Tian1, Youngwook Cho1, Youngho Song1, Seongcheol Park1,
Inho Kim2 and Soo-Yeon Cho1,∗

1 School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
2 Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology,
Pasadena, CA 91125, United States of America

E-mail: sooyeonc@skku.edu

Received 30 September 2024, revised 29 December 2024
Accepted for publication 5 March 2025
Published 27 March 2025

Abstract
Artificial sensory systems mimic the five human senses to facilitate data interaction between the
real and virtual worlds. Accurate data analysis is crucial for converting external stimuli from
each artificial sense into user-relevant information, yet conventional signal processing methods
struggle with the massive scale, noise, and artificial sensory systems characteristics of data
generated by artificial sensory devices. Integrating artificial intelligence (AI) is essential for
addressing these challenges and enhancing the performance of artificial sensory systems,
making it a rapidly growing area of research in recent years. However, no studies have
systematically categorized the output functions of these systems or analyzed the associated AI
algorithms and data processing methods. In this review, we present a systematic overview of the
latest AI techniques aimed at enhancing the cognitive capabilities of artificial sensory systems
replicating the five human senses: touch, taste, vision, smell, and hearing. We categorize the
AI-enabled capabilities of artificial sensory systems into four key areas: cognitive simulation,
perceptual enhancement, adaptive adjustment, and early warning. We introduce specialized AI
algorithms and raw data processing methods for each function, designed to enhance and
optimize sensing performance. Finally, we offer a perspective on the future of AI-integrated
artificial sensory systems, highlighting technical challenges and potential real-world application
scenarios for further innovation. Integration of AI with artificial sensory systems will enable
advanced multimodal perception, real-time learning, and predictive capabilities. This will drive
precise environmental adaptation and personalized feedback, ultimately positioning these
systems as foundational technologies in smart healthcare, agriculture, and automation.
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1. Introduction

Artificial sensory technology imitates the five human senses
such as vision, smell, taste, hearing, and touch to enable data
interaction between virtual and real worlds, providing intelli-
gent feedback to external stimuli[1–6]. The core of the tech-
nology involves using perceptual interfaces to gather ver-
satile environmental information and enhance understand-
ing and interaction with the external world through digital
processing[7–12]. To achieve this, the field integrates multiple
disciplines including nanomaterials synthesis, sensor device
fabrications, signal processing, and AI algorithms[13–19].
Based on these multidisciplinary collaborations, the artificial
sensory systems continuously expand human sensory capabil-
ities, enabling various applications in digital healthcare, smart
robotics, and smart agriculture[20–24].

These devices typically convert external stimuli into elec-
trical signals, which are then analyzed by AI systems in
the backend[25–29]. They often integrate components such
as electrical, electrochemical, optical, or mechanical sens-
ing devices[30–32]. The signals generated by these devices
include variations in voltage, impedance, current, or resistance
responses[33,34]. These electrical signals are digitized, form-
ing the basis for further analysis and interpretation by AI sys-
tems, allowing for more advanced classification and recogni-
tion of the sensory inputs[35,36]. Through the integration of
these various materials and technologies, artificial five-senses
are achieving significant multifunctionalities such as simul-
taneous temperature, pressure, and tactile sensing, while their
sensitivity has improved to the level of detecting even minute
changes (e.g., approximately 10 micrometers for touch, 100
pascals for pressure, 120 decibels for vision, and about 20 kilo-
hertz for hearing)[37–45].

Each type of sensor for the five senses generates different
forms of raw data[46]. To enhance the functionality of artificial
perception systems, these signals must be properly processed
to obtain meaningful data, making data processing particu-
larly important[47,48]. Traditionally, statistical methods such as
Kalman Filtering, Z-score, and Fourier Transform have typic-
ally been used for the signal processing of artificial sensory
system[49–51]. However, due to the wide and dynamic range
of stimuli that humans encounter, the resulting sensory data
exhibits nonlinear, massive, and multidimensional character-
istics, such as spiking patterns in neural recordings from tact-
ile sensors that represent touch intensity and texture across
tens of thousands of data points[52]. These features lead to
a high noise level in the raw data, which complicates sig-
nal extraction[53–55]. They also slow down processing speeds,
hindering the real-time analysis capabilities of artificial sens-
ory systems as they take several minutes to process a single
image frame[56]. Additionally, conventional methods struggle

to effectively capture the complex relationships and patterns
within the data[57,58].

AI has shown the potential to address these challenges. The
integration of AI with artificial sensory systems can be traced
back to the 1990s, with examples such as using artificial neural
networks (ANN) to identify similar beer aromas or employ-
ing AI for human-computer interaction[59–61]. Today, AI has
been fully integrated into artificial sensory systems at both the
device and system levels[12,62–64]. For instance, in visual sens-
ing, neural network can automatically extract features from
vast amounts of images, enabling high-precision object recog-
nition and classification[65,66]. In olfactory sensing, machine
learning models can handle large, complex datasets of odor
molecules, achieving higher sensitivity and accuracy in odor
recognition[67,68]. Similarly, in taste, auditory, and tactile sens-
ing, AI algorithms can extract key information from massive
raw data and performmultidimensional signal analysis, enhan-
cing the detection speed and accuracy of the artificial sens-
ory systems[35,69,70]. The fusion of AI with artificial sensory
devices has not only enhanced sensor performance such as
sensitivity, selectivity, and stability, but also equipped them
with real-time learning and adaptive capabilities enabling bet-
ter adaptation to dynamic environments[71–73]. This integra-
tion significantly enhances the interaction between devices and
users, enabling them to experience more realistic and immers-
ive sensations[74,75]. By collecting user behavior and envir-
onmental changes, the system can automatically adjust sens-
ing modes and feedback mechanisms, making the user exper-
ience more personalized and intuitive[76–79]. Furthermore, AI
can predict user needs and optimize the interaction process,
transforming devices from passive tools into intelligent assist-
ants capable of proactively understanding and responding to
user demands[80–83]. Therefore, the integration of AI in arti-
ficial sensory systems has become a key factor in elevating
their level of intelligence, opening up broad prospects for
fields[84].

Although the integration of AI into artificial sensory sys-
tems has shown the most critical technological components,
there has been no systematic research that categorizes the
target output functions of various artificial sensory systems
and comprehensively analyzes the raw data processing meth-
ods and AI algorithms required to achieve these functions.
Most current research focuses on individual artificial sens-
ory devices or specific signal processing techniques, without
providing AI insights for the overall artificial sensory sys-
tem or addressing the technical challenges from a user inter-
action perspective. This gap leaves researchers without clear
guidelines for handling complex sensory signals. Organizing
AI-based enhancement methods can provide a framework for
developing artificial sensory devices, maximizing their per-
formance and efficiency.
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Figure 1. Schematic illustration of AI integration with artificial sensory systems for multidimensional intelligent augmentation. Five types
of artificial sensory devices (touch, taste, vision, smell, and hearing) are integrated with AI to enhance cognitive simulation, perceptual
enhancement, adaptive human-machine interaction, and early warning.

In this review, we outline recent AI techniques aimed
at enhancing the cognitive performance of artificial sens-
ory systems that mimic the five human senses. We categor-
ize the enhanced performances of artificial sensory systems
into four key functions: cognitive simulation, that mimics
human perception; perceptual enhancement, improving sens-
itivity beyond human limits; adaptive adjustment, allowing
dynamic responses to environmental changes; and early warn-
ing, providing anticipation of potential risks (Figure 1). For
each function, we introduce specific AI algorithms and raw

data processing methods tailored to optimize their sensing per-
formance. First, under cognitive simulation, traditional phys-
ical and chemical sensors can only detect basic signals such as
temperature, touch, and odor concentration, but they lack the
ability to deeply understand and respond to complex, multidi-
mensional signals and dynamic environments. For example, in
artificial olfactory systems, sensors face difficulties in identi-
fying mixed odors or locating odor sources. By incorporating
deep learning and recurrent neural networks (RNNs), these
systems can learn patterns from multimodal data to simulate
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human cognitive abilities. In terms of perceptual enhance-
ment, we focus on howAI enables sensor systems to overcome
physical limitations, improve their ability to detect subtle sig-
nals, and minimize the impact of noise on perception. We will
also explore how AI can improve the robustness and stabil-
ity of perception across various application scenarios, particu-
larly in visual image recognition. For the adaptive adjustment
function, we will analyze how artificial sensory systems can
develop adaptive capabilities, automatically adjusting sensing
modes and feedback mechanisms based on environmental and
user behavior changes. The focus will be on applying adapt-
ive and reinforcement learning in AI to optimize real-time
feedback and self-regulation, enhancing both user experience
and system efficiency. The early warning section will cover
AI’s predictive algorithms and data analysis capabilities to
identify potential risks and anomalies in advance, enhancing
system safety and reliability. We will analyze how real-time
monitoring and data prediction can prevent failures or hazard-
ous events in areas such as harmful gas detection, early dia-
gnosis, and industrial safety control. Finally, we will also sug-
gest directions for the future technological development of AI-
integrated artificial sensory system for real-world applications.

2. AI integration with artificial sensory systems for
enhanced functionalities

2.1. Cognitive simulation of artificial sensory systems using AI

Cognitive simulation involves using AI to mimic human per-
ceptual abilities for processing complex sensory tasks[85–87].
Enhancing cognitive simulation improves the understanding
of multidimensional external signals and responsiveness in
dynamic environments. For example, Wu et al. utilized con-
volutional neural networks (CNNs) to simulate the excitatory-
inhibitory balance, a critical feature of the human olfact-
ory system, which is essential for brain data processing in
humans (Figure 2(a))[88]. The researchers adjusted gas pulse
parameters such as pulse intensity and duration to long-term
potentiation (LTP) and long-term depression (LTD), generat-
ing complex signals (Figure 2(a-i)). Traditional methods typic-
ally rely on manually extracted features such as using Fourier
transform to analyze frequency-domain information or stat-
istical methods to identify distribution characteristics. These
approaches require extensive domain knowledge and are lim-
ited in handling high-dimensional, nonlinear data[89]. In con-
trast, CNN performs weighted summation on local regions of
time and current signal data using sliding convolutional ker-
nels, which not only extracts key features while preserving
spatial information but also integrates signals at the neuronal
level through multi-channel parallel processing (Figure 2(a-
ii)). It increased the classification accuracy of the eight gases
including butyl acetate, dimethyl sulfoxide, hydrogen sulfide,
methylene blue, ammonia, nitrogen dioxide, trichlorometh-
ane, and tetrahydrofuran to 97%, and also enhanced its sensit-
ivity and precision in responding to changes in gas concen-
tration (Figure 2(a-iii)). Furthermore, the integration of AI
significantly improved processing speed and response effi-
ciency, covering both the recognition of gases and the dynamic

simulation of interactions between gas molecules and bionic
synaptic devices[15,90]. AI-based perception simulation also
enables artificial tasting based on the identification of complex
food components[91,92].

Jung et al. recently developed an electronic tongue (e-
tongue) that simulates the human taste perception process
using the soft votingmechanism (Figure 2(b))[93]. The sensory
device consists of multi-channel chemical sensors integrated
into a polydimethylsiloxane (PDMS) substrate, using a lipid
membrane solution and polyimide encapsulation (Figure 2(b-
i)). The system employs four different lipid membranes (for
saltiness, sourness, astringency, and sweetness) to mimic
the functions of taste receptor cells. The chemical signals
obtained through the electrochemical reactions of the recept-
ors are converted into electrical signals, which are then pro-
cessed using the soft voting ensemble learning method. This
involves weighted averaging or voting to combine the outputs
of multiple classifiers to derive the most probable classifica-
tion result. They also implemented a prototype-based classi-
fier to address uncertainties in taste recognition. This approach
improved the accuracy of taste analysis for beverages such
as wine, beer, and coffee (Figure 2(b-ii)). Even when hand-
ling large or faulty data, the e-tongue system achieved 95%
accuracy in analyzing six types of wine, and maintained over
90% accuracy even when one-third of the data was incorrect
(Figure 2(b-iii)).

Niu et al. integrated multi-layer perceptron (MLP) tech-
nology into full-surface bionic electronic skin (FSB e-skin),
enabling it to effectively learn and simulate the sensory pro-
cessing mechanisms of human skin (Figure 2(c))[94]. It allows
for the decoding and responsive handling of complex signals
such as real-time pressure and stretching. This AI-enhanced
FSB e-skin exhibits high sensitivity and rapid response cap-
abilities, constructed with a single-sided low microstructure
(LMS) Au/PDMS bottom layer, a double-sided LMS ionic
gel middle layer, and a double-sided heterogeneous structure
(VHS/LMS) PDMS/Au top layer through a stacked assembly
(Figures 2(c-i)). The system uses an MLP neural network with
five-layer and six-layer structures to process capacitance and
voltage signals collected by the supercapacitor ion electronic
skin and the triboelectric effect. As a feedforward neural net-
work, theMLP consists of an input layer, hidden layers, and an
output layer, with each neuron processing input data through
weighted summation and activation functions, enabling the
automatic extraction of complex data features. This mech-
anism allows the system to efficiently decode and respond
to dynamic signals such as real-time pressure and stretch-
ing. The device collected datasets from 12 different American
Sign Language gestures and materials for training and testing,
achieving an average recognition accuracy of 90.83%, which
increased for common gestures like “A,” “B,” and “C.” The
average accuracy for material recognition was 98.34%, with
over 99% accuracy for eight of the materials and 85% accur-
acy for the remaining (Figure 2(c-ii)).

Jiang et al. recently showed that an ultra-thin eardrum-
like self-powered acoustic sensor (ETAS) can be achieved
through the use of the DenseNet deep convolutional net-
work algorithm (Figure 2(d))[95]. The sensor is composed of
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CNN for the identification of different gases in an e-nose

Soft voting ensemble for distinguishing different tastes using an e-tongue

MLP for recognizing different gestures in e-skin

DenseNet for sound recognition in electronic eardrum
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Figure 2. Cognitive simulation of artificial sensory systems using AI. (a) CNN for the identification of different gases in an e-nose. (i)
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characteristics using excitatory input. (ii) CNN structure for gas recognition. (a-iii) Accuracy for gas recognition using CNN. (a-i)–(iii)[88]

JohnWiley & Sons. © 2024Wiley-VCHGmbH. (b) Soft voting ensemble for distinguishing different tastes using an e-tongue. (i) Schematics
of the e-tongue system. (ii) Chemical structures of four lipids and their signals, from left to right: TDAB and hexadecanol (salty), TOMA
(sour), oleic acid and PB (astringent), TDAB and trimellitic acid (sweet). (iii) Confusion matrix for six types of wine, along with the accuracy
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polyacrylonitrile and polyamide 6 nanofibers coated with sil-
ver, fabricated through electrospinning and magnetron sput-
tering (Figure 2(d-i)). By adjusting the geometric parameters
of the sensor, the frequency response range can be tuned from
20 Hz to 5 000 Hz. The deformation displacement and pres-
sure distribution of the film at various frequencies are simu-
lated using COMSOL multiphysics (Figure 2(d-ii)). By con-
verting the sound signals into Mel spectrograms and training
the system using DenseNet, which consists of multiple con-
volutional layers, each layer not only receives input from the
previous layer’s features but also from all preceding layers’
features, forming a densely connected network. In each con-
volutional layer, DenseNet performs sliding extraction of fea-
tures from the Mel spectrogram (such as frequency, wave-
form, etc.). This structure allows each layer in the dense block
to share features, improving the efficiency of information
flow across the network. Through this approach, the sensor
has achieved a sound recognition accuracy of up to 92.64%
(Figure 2(d-iii)). Overall, AI significantly enhances the cog-
nitive simulation of artificial sensory systems which results
in more accurate recognition and response to diverse sensory
inputs.

2.2. Perceptual enhancement of artificial sensory systems
using AI

Building on these perception simulations, the performance of
the artificial sensory systems can be further enhanced using
AI[96,97]. The aim is not just to mimic human perception,
but to surpass its natural limits, offering more advanced per-
ceptual capabilities[12,98]. Achieving this requires integrat-
ing diverse data sources, analyzing latent features in high-
resolution, and pushing AI for greater precision and broader
feature extraction[99,100]. For example, Cho et al. combined a
GRU based on autoencoders with an electronic nose (e-nose)
composed of a multi-array metallic channel system, signi-
ficantly enhancing its detection performance for ultra-low
hydrogen (H2) concentrations below the limit-of-detection
(LOD) obtained using a signal-to-noise ratio (SNR) method
(Figure 3(a))[57]. Researchers selected six different metals
(gold, copper, molybdenum, nickel, platinum, and palladium)
for H2 adsorption as the sensitive channel materials of the
chemiresistor devices (Figure 3(a-i)). The sensors collected
resistance change data at various H2 concentrations and under
normal conditions (only nitrogen, with H2 concentrations of
0.205 mg·m–3 and 0.82 mg·m–3, both below the limit of
detection (Figure 3(a-ii)). When the resistance changes of six
metals over time are input into the GRU (the gated recur-
rent unit)-based autoencoder, as a computational model sim-
ulating biological neural networks, it receives this resistance
change signals through the input layer and converts them into
a format that can be processed by the neural network. The
signals then pass through multiple hidden layers, where each
GRU unit computes the weighted sum of the input resistance
change features and processes the nonlinear characteristics
of the signals using activation functions. Each GRU unit not

only receives input from the previous layer but also integ-
rates information from other layers through gating mechan-
isms, enhancing the precision of feature extraction. Finally,
the signals pass through the output layer for classification or
regression processing, yielding predictions such as gas con-
centration. This process allows the autoencoder to effectively
learn and identify the key features in the resistance changes.
In the autoencoder network, the average detection accuracy
for 0.205 mg·m–3 H2 was 70.0%, while for 0.82 mg·m–3

H2, it was 66.2% (Figure 3(a-iii)). Kernel density estimation
plots and receiver operating characteristic (ROC-AUC) scores
were used to evaluate the model’s ability to detect hidden
signals, achieving ROC-AUC values of 0.817 and 0.874 for
0.205 mg·m–3 and 0.82 mg·m–3 H2, respectively. This indic-
ates that the e-nose system can detect the presence of H2 even
below its LOD region. This capability is primarily due to the
autoencoder’s ability to identify weak yet critical signal fea-
tures that are nearly invisible in the raw data, demonstrating
the immense potential of deep learning in enhancing chemical
sensor performance.

Leong et al. developed a surface-enhanced Raman scat-
tering (SERS) platform for the artificial tongue, called
the “SERS taster”, for multiplex flavor analysis, utilizing
machine learning to achieve high-precision flavor detection
and quantification in wine (Figure 3(b))[101]. They selec-
ted four surface receptors to introduce a range of receptor-
flavor chemical interactions, focusing on five representative
wine flavor molecules, including alcohols (menthol), terpenes
(pinene, limonene), and sulfur compounds (Figure 3(b-i)).
Subsequently, support vector machine (SVM) discriminant
analysis was employed, achieving 100% accuracy in flavor
classification. Principal component analysis (PCA) was used
for the complete identification of the flavor molecules, even
distinguishing alcohols with different degrees of substitu-
tion. Building on this, the researchers applied the partial least
squares regression (PLSR) algorithm to analyze the concen-
tration of flavor molecules. The concentration gradient ranged
from 10 µM to 100 mM, and SERS spectra from these stand-
ard samples were collected and input into the PLSR model.
The model adjusted its parameters by learning the relation-
ship between the SERS spectra and concentration. The accur-
acy of the model was evaluated by calculating the correlation
coefficient (R2) and root mean square error (RMSE) between
the predicted and actual concentrations. By learning a large
number of patterns, the model can effectively identify and
correct concentration deviations caused by various factors,
demonstrating strong robustness. The results showed that the
PLSR model achieved a correlation coefficient of up to 0.98
and a low RMSE in predicting the concentration of wine fla-
vor molecules, demonstrating high accuracy and reliability
(Figure 3(b-ii)).

Niu et al. demonstrated that all-fabric bionic electronic
skin (AFB e-skin), which combines dual-modality sensing
for intuition and touch with AI algorithms, can achieve high-
precision material perception, even for materials with sim-
ilar tactile sensations (Figure 3(c))[102]. AFB e-skin was made
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Figure 3. Perceptual enhancement in artificial sensory systems using AI. (a) GRU autoencoder for enhancing gas sensitivity in e-nose. (i)
Schematic and optical microscope image of the sensing devices. (ii) Signal characteristic graphs under N2, 10 mg·m–3 H2, and 2.5 mg·m–3

H2 conditions. (iii) Detection accuracy of the encoder under different metal sensors for N2, 10 mg·m–3 H2, and 2.5 mg·m–3 H2. (a-i)–(iii)
Reprinted (adapted) with permission from[57]. Copyright (2020) American Chemical Society. (b) SVM for wine classification and concen-
tration recognition using e-tongue. (i) Schematic diagram of the multi-receptor SERS taster substrate structure. (ii) PCA score plot of the
relative flavor data clustering in the SERS taster, along with a schematic diagram for concentration identification. (iii) PCA score plot of the
relative flavor data clustering in the SERS taster, along with a schematic diagram for concentration identification. (b-i)–(iii) Reprinted (adap-
ted) with permission from[101]. Copyright (2021) American Chemical Society. (c) MLP for perceiving different materials of e-skin. (i) Dual
interlocking structure of the e-skin. (ii) Waveform signals generated by nine materials in proximity and pressure modes. (iii) MLP structure
and the confusion matrix for nine materials. (c-i)–(iii)[102] JohnWiley & Sons. © 2023Wiley-VCHGmbH. (d) CNN for enhanced recognition
ability of e-eyes. (i) Diagram of the bionic eye structure. (ii) The reconstructed images after in-device noise filtering. (iii) Accuracy curves
of CNN-based pattern recognition for the MNIST dataset with and without neuromorphic preprocessing under Gaussian noise conditions.
(d-i)–(iii) Reproduced from[26]. CC BY 4.0.
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from conductive fabric electrodes and a polyvinylidene fluor-
ide composite infused with ionic liquid, effectively capturing
capacitance changes caused by variations in material hard-
ness and texture (Figure 3(c-i)). They collected 2 700 sets
of proximity and pressure signals from nine materials, using
2 160 sets for training and 540 sets for testing (Figure 3(c-
ii)). Subsequently, a five-layer MLP neural network was
used to learn and train the capacitance changes of differ-
ent materials, successfully distinguishing nine materials with
similar tactile sensations (e.g. ceramics and glass), achiev-
ing an average recognition accuracy of 96.6% (Figure 3(c-
iii)). Through extensive learning of tactile data patterns, the
AFB e-skin effectively detects and adjusts for perception devi-
ations resulting from differences in material hardness and tex-
ture, showcasing high resilience. Even when these materials
feel very similar, it can maintain high-precision recognition
ability.

When artificial vision systems receive light signals, they
must translate them into brain-interpretable images, and AI
enhances this process by minimizing noise and boosting
image clarity and precision[103,104]. A representative example
is the development of a hemispherical perovskite nanowire
array-based bionic retina by Long et al., which integrates
advanced color vision and image preprocessing functions
(Figure 3(d))[26]. The bionic eye uses CsPbI3 perovskite
nanowires, a material that responds to the entire visible spec-
trum due to its narrow bandgap (∼1.8 eV). The nanowires are
arranged in a high-density array, with SnO2 and NiO double-
layer oxides coated on top to form electron and hole transport
layers (Figure 3(d-i)). The bionic eye also integrates an arti-
ficial lens and electronic iris to adjust focal length and light
intake, further enhancing image quality (Figure 3(d-ii)). CNN-
based ResNet-18 model was used to analyze and classify the
image data collected by the bionic eye. These data, consist-
ing of photocurrents generated by the perovskite nanowires
under various light intensities and color temperatures, were
then used to reconstruct the captured color images. After the
CNN learns the color features of different regions in the image,
the system automatically detects and corrects color distortion,
adjusting color temperature, saturation, and contrast to achieve
optimal color balance. This dynamic adjustment process can
adapt to varying lighting conditions in real time, optimizing
the response of each pixel, thereby achieving 99.4% accur-
acy in color balance and contrast, significantly enhancing the
overall stability of the visual effect (Figure 3(d-iii)). However,
relying on a single index such as accuracy does not fully cap-
ture the system’s true performance. In practical applications,
additional factors including the algorithm’s adaptability to
varying lighting conditions, processing speed, and false alarm
rate, should be considered to more comprehensively evalu-
ate the stability and resilience of AI in enhancing perception
across diverse environments[105]. CNN, autoencoders, SVM,
andMLPs have significantly enhanced the precise detection of
low-concentration substances, differentiation of similar mater-
ials, and advanced recognition of flavors and colors[106]. This
allows sensory systems to surpass human perception limits,
improving sensitivity, accuracy, and adaptability in areas such

as chemical detection, tactile recognition, taste analysis, and
visual processing.

2.3. Interaction and adaptive regulation of artificial sensory
systems using AI

In addition to utilizing AI for simulation and enhancing the
performance of artificial sensory systems, human-machine
interaction can also be significantly improved by optimizing
user interfaces and feedback mechanisms for more natural and
efficient communication between users and systems[107–109].
Adaptive regulation allows the system to dynamically adjust
its responses based on environmental changes and user
behaviors, thereby enhancing overall performance and user
experience[110–112]. The integration of these technologies
boosts device interactivity while increasing their responsive-
ness to environmental changes, enabling versatile applications
across real-world scenarios[113,114]. For example, Lu et al.
developed a multi-sensory neural network system (MSeNN)
that connects vision, touch, hearing, smell, and taste by sim-
ulating human sensory processing (Figure 4(a))[115]. Silicon-
based photodetectors, MXene-based pressure sensors, MEMS
microphones, and metal oxide semiconductor gas sensors
were used to simulate signals from the five senses, which are
then encoded using analog-to-digital converters and conver-
ted into optical pulses via optical modulators. (Figure 4(a-
i)). They used a hierarchical dilated recurrent neural network
(DRNN) with gradient descent to achieve cross-modal learn-
ing (Figure 4(a-ii)). The structure of DRNN introduces an
expansion factor that allows nodes in each recurrent layer to
skip over several time steps. Instead of simply connecting to
the previous time step, the network “expands” to link to earlier
or later time steps, increasing the receptive field and enabling
the network to capture long-term dependencies while main-
taining computational efficiency. This approach enabled the
fusion of input from different senses, such as visual images,
sound clips, pressure data, and simulated smell and taste
data, for the recognition and understanding of multimodal
information. The performance and recognition capability of
the model were evaluated based on recognition accuracy and
mean square error (MSE) loss functions. When combining
visual and auditory data, the system exhibited high perform-
ance, with recognition accuracy reaching 97% (Figure 4(a-
iii)). When tactile data were introduced, the overall system
accuracy remained stable above 95%, and theMSEwas around
0.06. MSeNN can assist individuals with visual or audit-
ory impairments by developing devices that interact with the
nervous system to restore or enhance sensory functions.

Guo et al. demonstrated an AI-assisted caregiving walk-
ing cane based on tactile sensors (Figure 4(b))[116]. This
device integrates a piezoelectric triboelectric nanogenerator
(P-TENG), an electromagnetic generator (EMG), and a rotary
triboelectric nanogenerator (R-TENG), effectively captur-
ing voltage changes when the cane contacts the ground
(Figure 4(b-i)). These changes are closely related to the user’s
gait, walking speed, and contact force, providing a rich source
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DRNN for multi-sensor interactive response

CNN for adaptive position feedback of e-skin

CNN for adaptive material recognition and force adjustment in e-skin

CNN for adaptive response to different light intensities in e-eyes

(a)

(b)

(c)

(d)

(i) (ii)

ANN Touch

100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0

6.25
0 0 0 0

5
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0
4.76

0 0 0 0 0
0 0 0 0 0 0 0

5.26
0

0 0 0 0 0 0 0
0 0 0 0 0

0 0 0
5.56

5.880 0 0
0 0
0 0

0

0 0

0
0 0 0 0 0

0
0

0
0 0 0 0 0 0 0 0

0
0

0

0 0 0 0 0 0 0
8

0 0 0 0

0

0
4.55

0 0 0 0 0 0 0 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 0 0 0

0
0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
0

100
95.8

80
82.4

100
83.3

100
100

89.5
100

91.7
95.2

88
95.5

100
100100

95
100

93.8

0
Apple

Banana
Bennet

Berry
Cherry

Coconut

Tr
ue

 la
be

l

Predicted label

Date
Durian
Grape

Lemon
Mango
Melon
Olive

Orange
Peach

Peanut
Pear

Pineapple
Pomelo
Walnut

Apple

Ban
an

a

Ben
net
Berr

y

Cherr
y

Coco
nut

Date

Duria
n

Grap
e

Lem
on

Man
go
Melo

n
Oliv

e

Oran
ge
Pea

ch

Pea
nut

Pea
r

Pinea
pple

Pomelo

Waln
ut

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
5.565.56

100

100

80

80

Proto
Softmax32.50

76.25

86.25 84.38
90.42

93.75 94.50

88.33
90.63 91.75

60

60
Training set size/%

A
cc

ur
ac

y/
%

A
cc

ur
ac

y/
%

A
cc

ur
ac

y/
%

40

40
20

20

4.174.17

0 0 0
0 0 0 0

5.26
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

0
4

0 0 0 0 0
0 0 0 0

0 0 0
0 0

0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0

4.17
0

5.88
0 0 0 0 0 0 0 0 0 0

0 0 0 0
10

0 0 0 0 0
10

5.88

0 0 0 0 0 0 0

Hearing

Vision

Smell

Taste

ANN

ANN

ANNArtificial MSeNN

IT

IA

IV

IO

IG

(iii)

(i)

R-TENG

Pressure sensor Hard Soft
Small Apple

Grasped HB-TENG
& touch sensors

data

Big Apple Branch Stone Soil

Capacitive

100

100

75

50

25

A
cc

ur
ac

y/
%

100

75

50

25

80

60

40

20 Linear CubicGaussian KNN CNN

data

Pressure
sensors

Small
apple

Big
apple Branch Stone Soil

Triboelectric data
Ball

Cuboid

pF Khard

VDS = 7.5 V

I D
S 
/(a

.u
.)

VGS = −3 V
VDS = 7.5 V
VGS = −3 V

CCR = 2.43
6 kHz

0.04

0.89

0.1

0.96

Scotopic adaptation
2 158.43 to 125.62 pW

Photopic adaptation
0 to 2 158.43 pW

HLR = 0.15

CCR = 0.65
3 kHz

HLR = 0.14

Khard > Ksoft Ksoft

pF

Pressure sensor
Pressure

V

Cp

d0

d1

Touch sensor

HB
-T

EN
G

To
ug

h 

Touch sensor

Conductive
silicone

Electrode

Electric signal

Touch sensitive Pressure sensitive External stimuli
from object

I

I
Silicone

R-TENG

Walking Stand up Sit down Up stairs Down stairs 2
0

Up
H1 100.0%

20
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

100.0%
20

100.0%
20

100.0%
20

100.0%
20

100.0%
20

100.0%
20

100.0%
20

100.0%
20

95.0%
19

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

5.0%
1

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

H1

H2

H2

H3

H3

H4

H4

H5

H5

H6

O
ut

pu
t c

la
ss

Identity recognition-accuracy: 99.50%

H6

H7

H7

H8

H8

H9

H9

H10

H10

Left

Center

Right

Bottom

−2
0

2
0

−2

Vo
lta

ge
/V

Vo
lta

ge
/V

2.0

1.5

1.0

0.5
0 100 200 300 400

Data number
500 600 700

Multi-channel 
Sigle-channel

0.05
0.00
0.10
0.05
0.00
0.05
0.00Δ

C
/C

0/
(a

rb
.u

ni
ts

)

Small
apple

Big
apple Branch Stone Soil

0 100 200 300 400
Data number

500 600 700

800

Time/s

0
2
0

−2
0.0 4.5 9.0 13.5 18.0 22.5

(ii) (iii)

(i)

Electric field
Intensity

D
G

S

1. Light power 0 %

High 1.0

0.5

0.0

I D
S 
/(a

.u
.)

1.0

0.5

0.0

0 30
Time/μs

0 100

0 2 4 6 8 10 12 14

Time/μs

Adaptation time/μs

0 40 80 120 160

Photopic adaptation
brightness (+100%)

Photopic adaptation
brightness (−100%)

200
Adaptation time/μs

29 μs

1.4 μs
2.3 μs

3.6 μs
5.1 μs

9.5 μs

51 μs

80 μs

118 μs

98.3%

98.2%

174 μs

60

Low

2. Light power 5 %

WSe2

MoS2

WSe2

MoS2

WSe2

MoS2

WSe2

MoS2

SiO2

Si

3. Light power 20 %

4. Light power 100 %

(ii) (iii)

(i) (ii)

Figure 4. Adaptive human-machine interaction of artificial sensor systems using AI. (a) DRNN for multi-sensor interactive response. (i)
MSeNN five-sense sensor schematic diagram. (ii) Schematics of the operation flow of MSeNN. (iii) MSeNN interactive confusion matrix and
accuracy. (a-i)–(iii) Reproduced from[115]. CC BY 4.0. (b) CNN for adaptive position feedback of e-skin. (i) Schematics of the R-TENG based
artificial tactiles. (ii) Output curves of the five-channel P-TENG and a depiction of the nine typical contact points between the P-TENG and
the ground across five different movement states. (iii) Confusion matrix of 10 users. (b-i)–(iii) Reprinted (adapted) with permission from[116].
Copyright (2021) American Chemical Society. (c) CNN for adaptive material recognition and force adjustment in e-skin. (i) Schematics of the
skin-inspired tactile sensor consist of pressure and touch sensors, operating on the principle that touch drives the flow of free electrons, while
subsequent pressure deformation alters the capacitance value. (ii) Common operational tasks in fruit sorting, showing the reflection capacitance
data obtained from pressure sensors, triboelectric data from HB-TENG and touch sensors, as well as the accuracy results of multi-channel
concatenation, single-channel concatenation, linear, Gaussian, cubic KNN, and CNN for five grasped objects. (c-i)–(ii) Reprinted (adapted)
with permission from[117]. Copyright (2024) American Chemical Society. (d) CNN for adaptive response to different light intensities in e-
eyes. (i) Schematic diagram of simulated electrical characteristics. (ii) Correlated current signals under light and dark adaptation conditions.
(iii) Visual adaptation results under dark and light adaptation conditions. (d-i)–(iii) Reproduced from[118]. CC BY 4.0.
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of dynamic data (Figure 4(b-ii)). The cane employs a one-
dimensional CNN to extract high-level features from the sig-
nals, identifying user activity states such as standing, sitting,
walking, and climbing stairs, achieving an accuracy of 99.5%
(Figure 4(b-iii)). For specific tasks such as identity verification
and mobility impairment classification, the accuracy reached
100%. Additionally, the system includes GPS tracking and
environmental sensing capabilities, enabling it to automatic-
ally send emergency signals using wireless networks to pre-
set contacts or healthcare providers when abnormal move-
ments, such as falls, are detected. This functionality ensures a
quick response in emergencies, highlighting AI’s critical role
in adaptive regulation.

Wang et al. combined tactile sensors with a CNN
model to achieve real-time feedback on grasped objects
(Figure 4(c))[117]. The highly bendable triboelectric nanogen-
erator (HB-TENG) sensor is made from silicone and con-
ductive fabrics. The upper-pressure sensor features a pyramid
structure to mimic slowly adapting receptors, while the lower
touch sensor consists of Ni fabric and silicone in varying sizes,
operating in a single-electrode mode for flexibility. When an
object approaches, it generates current by driving free elec-
trons. Increased pressure deforms the sensor and raises capa-
citance, while removing pressure restores the original state
and decreases capacitance. When the object separates, elec-
trons return to the ground, producing an opposite triboelec-
tric current (Figures 4(c-i)). The system captures detailed tact-
ile and pressure information, which is then analyzed by the
CNN to identify patterns in the tactile and pressure data. For
example, when the system grips an apple, it automatically
determines its material and, based on its shape, deduces the
appropriate pressure range for grasping. This information is
then fed back into the system, enhancing the AI adaptability
of the robotic system. The system can accurately identify the
size, shape, and material of various objects, adjusting its grip-
ping strategies accordingly for example, by modulating grip
strength to match the object’s properties and reducing the risk
of damage. Additionally, by analyzing multimodal data in real
time, the robot can respond quickly in dynamic environments,
improving operational efficiency and safety. The CNN model
achieves up to 95% accuracy in identifying complex and irreg-
ularly shaped objects, demonstrating learning and adaptation
capabilities (figure 4(c-ii)).

Li et al. combined bio-inspired transistors with CNN
to develop a system that surpasses the human retina,
achieving ultra-fast and high-frequency visual adaptation
(Figure 4(d))[118]. The device is based on a junction field-effect
transistor consisting of an ultrathin molybdenum disulfide
(MoS2) channel and a tungsten diselenide gate electrode on top
(Figure 4(d-i)). By adjusting the gate voltage, the device can
quickly adapt to changes in light intensity by altering the photo
response of the MoS2 layer. Under strong light, the device
enters avalanche mode, with a sharp increase in current; as the
light decreases, it switches to photoconductive mode, main-
taining stable operation (Figure 4(d-ii)). The system learned
the variation patterns of 60 000 MNIST images with different

brightness levels, analyzed the relationship between bright-
ness and voltage, and performed reverse correction on the gen-
erated images. After 30 training cycles, under dark adaptation
conditions, the system achieved an accuracy of 98.3% within
9.5 microseconds, while under light adaptation conditions,
it reached an accuracy of 98.2% within 174 microseconds
(Figure 4(d-iii)). With CNN integration, the system can rap-
idly adapt to different brightness environments within micro-
second timescales, significantly improving image recognition
accuracy and speed, which is highly valuable for applications
such as facial recognition and autonomous driving. In general,
through deep learning and neural network models, the artifi-
cial sensory systems can integrate multiple perceptual inform-
ation and respond quickly to environmental changes, laying
the groundwork for future applications such as autonomous
driving.

2.4. Prediction monitoring and early warning of artificial sens-
ory systems using AI

With enhanced perception and machine adjustments by artifi-
cial sensory devices as the foundation, we can ultimately use
the systems for event prediction and early warning[98,119,120].
For example, AI-integrated portable breathalyzer, known
as GeNose C19, analyzes exhaled breath components to
assess the likelihood of COVID-19 infection and issue
alerts (Figure 5(a))[121]. The system uses a metal oxide
semiconductor-based gas sensor array to detect volatile
organic compounds (VOCs) in exhaled air, which exhibit spe-
cific patterns in individuals infected with coronavirus dis-
ease 2019 (COVID-19) (Figure 5(a-i)). The study included
615 exhaled breath samples, 43 positives and 40 negatives,
verified through the reverse transcription-quantitative poly-
merase chain reaction (Figure 5(a-ii)). The researchers used
four machine learning models—Linear Discriminant Analysis
(LDA), SVM, Stacked Multilayer Perceptrons (SMP), and
DNN—to train and test the data. These models each employed
different data processing strategies and feature extraction
methods, enabling the system to achieve high accuracy under
laboratory conditions while maintaining robustness and sta-
bility in the face of variations in different populations, envir-
onments, and samples, thus meeting the diverse requirements
of practical applications. In the experiment, the highest detec-
tion accuracy reached 95%, with a sensitivity of 94% and a
specificity of 95% (Figure 5(a-iii)). Through real-time data
processing and intelligent algorithms, GeNose C19 can ana-
lyze and identify virus infection risks within a few minutes,
significantly improving rapid response to pandemics. Its non-
invasive and easy-to-use nature makes it ideal for wide deploy-
ment in resource-limited areas, providing timely warnings and
isolating potential carriers to prevent the spread of infections.
The warning technology is critical for early detection of infec-
tion hotspots, implementing preliminary control measures,
and optimizing the allocation of emergencymedical resources,
especially in the face of rapidly mutating viruses and wide-
spread outbreaks[122].
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Figure 5. Prediction and early warning functions of artificial sensor systems enabled by AI. (a) DNN for virus early warning in e-nose. (i)
Schematics of VOCs detection mechanism in exhaled breath using a metal oxide gas sensor array. (ii) Response signals of the gas sensor
array in GeNose C19 for the breath of COVID-19 negative and positive patients. (iii) Accuracy of virus detection using four machine learn-
ing algorithms: LDA, SVM, MLP, and DNN. (a-i)–(iii) Reproduced from[121]. CC BY 4.0. (b) LSTM for gesture prediction of e-skin. (i)
Photograph of the e-skin (left), and its electrical response mechanism during deformation (right). (ii) The bending of the fingers under dif-
ferent skin deformations and the real-time prediction of these changes. (iii) Accuracy of gesture prediction. (b-i)–(iii) Reproduced from[123].
CC BY 4.0. (c) DNN for temperature early warning of e-skin. (i) Schematics of the multilayer stacked structure of the e-skin. (ii) CNN struc-
ture to identify signals obtained from grasped objects. (iii) Accuracy of temperature early warning using multimodal electronic skin. (c-i)–(iii)
Reproduced from[124]. CC BY 4.0.

In addition to detecting airborne viruses, this technology
can also detect harmful gases, provide early warnings for high-
temperature contact, or identify abnormal frequencies in sound
waves as potential threats[125]. For example, Kim et al. com-
bined an e-skin with AI to predict finger movements by detect-
ing subtle changes in the wrist’s skin (Figure 5(b))[123]. The
sensor is fabricated by coating a CPI film onto a glass sub-
strate, spin-coating AgNP ink, and employing laser processing
to create a crack-sensing layer. Combined with PDMS film for
skin attachment, the crack-induced resistance changes under
mechanical strain enable signal transmission. The sensors
were placed on the surface of the wrist, and when the fin-
gers bent, the wrist sensors experienced stretching or compres-
sion of the cracks, causing changes in resistance and current
(Figure 5(b-i)). The deep learning network utilized consisted

of two parts: an encoder that used LSTM layers to process the
temporal patterns of the sensor signals, generating latent vec-
tors representing hand dynamics; and a decoder that mapped
these vectors to a predefined hand motion measurement space
(Figure 5(b-ii)). The system achieved 96.2% accuracy in pre-
dicting finger bending and effectively distinguished deform-
ations caused by non-finger movements, such as wrist twist-
ing (Figure 5(b-iii)). Additionally, the researchers applied this
technology to predict finger key presses on a digital keyboard,
achieving similarly impressive results.

Researchers have optimized existing systems, maintain-
ing their original predictive capabilities while expanding their
functions to enable real-time risk alerts. For instance, Li et al.
combined DNN with multimodal e-skin, achieving precise
identification of environmental objects and rapid detection
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of harmful gases (Figure 5(c))[124]. The humidity and tem-
perature detection is based on the hydrogen bonding interac-
tion between the abundant O-H groups in PVA-CNF organic
hydrogels and water molecules. As humidity increases, the
hydrogel absorbs more water, leading to enhanced ion migra-
tion and increased conductivity, thereby reducing the sensor’s
resistance. An increase in temperature accelerates ion diffu-
sion and interfacial charge transfer, further enhancing con-
ductivity and enabling temperature and humidity detection
(Figure 5(c-i)). The experiments used 100 data samples,
including plastic bottles, rubber prosthetic hands, heated rub-
ber prosthetic hands, dry wood, and wet wood, with 20
samples per object. The sensors on the robot’s hand collected
signals related to temperature, humidity, pressure, and prox-
imity, which were standardized using Z-scores and then input
into the DNN model (Figure 5(c-ii)). DNN is composed of
multiple layers of neurons including an input layer, one or
more hidden layers, and an output layer. Each neuron is con-
nected to neurons in adjacent layers via weighted connections.
Activation functions such as ReLU or Sigmoid are used to
introduce non-linearity, allowing the model to learn complex
patterns from signals such as temperature, humidity, and pres-
sure. The network adjusts the weights by minimizing the error
between predicted and actual outputs, typically using back-
propagation and gradient descent methods. After 200 train-
ing cycles, the model could distinguish these objects with
100% accuracy (Figure 5(c-iii)). Additionally, the system fea-
tures real-time NO2 concentration monitoring. When the con-
centration exceeds the safety threshold, the system immedi-
ately triggers an alert. The sensor demonstrated high sensit-
ivity to NO2, with a detection limit of 11.1 parts per billion
(ppb) and a sensitivity of 254% ppb−1. By integrating a micro-
processor and wireless circuitry, the system transmits data to
mobile devices via Bluetooth, enabling remote monitoring and
instant response. This system shows great potential in improv-
ing rescue efficiency and safety, particularly in complex dis-
aster response scenarios. By integrating multimodal sensors
with deep learning, AI can efficiently analyze complex sig-
nals and detect potential risks in real time, such as harmful
gases, environmental threats, or health abnormalities[126,127].
This technology provides more accurate risk warnings and is
widely applicable in areas such as disaster response and urgent
health monitoring, significantly enhancing the system’s intel-
ligence and adaptability[128,129].

2.5. Comparative analysis of AI algorithms in different artificial
sensory systems

Artificial sensory systems face varying demands across stages
such as cognitive simulation, perceptual enhancement, inter-
action, and adaptive regulation, as well as prediction monit-
oring and early warning, which determine the type and com-
plexity of the algorithms employed (Table 1)[130,131]. In the
cognitive simulation stage, the primary goal is to identify
stable environmental patterns. High-dimensional and com-
plex olfactory data often utilize CNNs for odor recognition,

which excel in feature extraction but involve complex struc-
tures and high training costs[89,132]. Auditory data can bene-
fit from DenseNet, which maintains network depth while con-
trolling the parameter count, though parameter tuning is chal-
lenging and resource-intensive[95,133]. For simpler tactile data,
MLPs are effective due to their ease of implementation and low
resource requirements, but they struggle with capturing more
complex features[94,134]. Gustatory signals favor DNNs for
extracting refined features, but they require large-scale data-
sets and are prone to overfitting[135].

In the perceptual enhancement stage, the focus
is on improving signal quality in complex or noisy
environments[136]. For olfactory data containing anomalies
or sparsely distributed samples, variational autoencoders or
GRU-based autoencoders capture distributions and temporal
features in latent spaces, enabling effective denoising and
anomaly detection[57,137]. However, their training is complex
and requires large amounts of high-quality data[138]. For tactile
data, multi-layer MLPs enhance features and are easy to train,
though they are less effective in extreme noise conditions[102].
Gustatory data can use Gaussian kernel SVM-R for precise
feature differentiation, suitable for small-scale datasets, but
it is sensitive to parameters and difficult to scale to high-
dimensional or large-scale data[139,140]. Visual signals fre-
quently employCNNs for image feature extraction and denois-
ing, but this comes with high computational costs and data
requirements[105].

In interaction and adaptive regulation scenarios, mul-
timodal and dynamic data require algorithms that can quickly
adapt to environmental changes[141,142]. For multimodal
sequential data, expanded RNNs extend the temporal recept-
ive field, while prototype learning networks quickly adjust
to category shifts[143,144]. However, these models have com-
plex structures, are challenging to tune, and demand signi-
ficant computational and storage resources[145]. When pro-
cessing tactile data in constrained environments, simple
interpolation or KNN methods remain efficient and cost-
effective but lack advanced feature extraction and generaliz-
ation capabilities[146,147]. For more complex tactile textures,
CNNs are advantageous but require higher computational
power and data resources[148,149].

In the prediction monitoring and early warning stage,
algorithms infer future states based on historical time-series
data[150,151]. LSTMs and DNNs effectively capture long-term
dependencies and high-dimensional features in tactile sig-
nals, significantly improving prediction accuracy and robust-
ness, though they are time-consuming to train and prone to
overfitting[123,124]. For small-scale olfactory data, LD, SVM,
or MLP offer fast convergence and are well-suited for data-
limited scenarios, but they fall short for high-dimensional
complex problems[121]. As data complexity increases, DNNs
showcase strong deep representation capabilities but require
more training data and computational resources[123]. In multi-
class recognition tasks, accuracy is commonly used to meas-
ure overall classification rates[10,152]. For anomaly detection
and denoising in olfactory data, reconstruction errors and
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Table 1. Algorithms for different functional stages and sensory modalities in artificial sensing systems.

Types of artificial
sensory systems

Algorithms Evaluation metrics

Cognitive simulation Smell CNN Accuracy
Taste DNN, Single, HV, SVV Accuracy
Touch MLP Accuracy
Hearing DenseNet Accuracy

Perceptual enhancement Smell Fully-connected autoencoder, LSTM-based
autoencoder, CNN1D-based autoencoder,
Variational autoencoder, GRU, AnoGAN

Accuracy, ROC-AUC

Taste SVM-R Accuracy RMSE
Touch Five-layer MLP Accuracy
Vision CNN Accuracy

Interaction and adaptive
regulation

Touch+ Hearing DRNN, Softmax-classification layer neural
network,
Prototype learning neural network

Accuracy MSE

Touch Linear, Gaussian, Cubic, KNN, CNN Accuracy
Vision CNN Accuracy

Prediction monitoring
and early warning

Smell LD, SVM, MLP, DNN Accuracy
Touch LSTM, DNN Accuracy, sensitivity, specificity

ROC-AUC are key metrics, while sensitivity and specificity
are better suited for evaluating detection precision and false
positive rates in multi-layered auditory features[153,154].

The selection of algorithms for artificial sensory systems
should not be confined to single-dimensional comparisons but
should instead consider model capabilities, data character-
istics, sensor types, task objectives, and resource constraints
comprehensively[155,156]. Deep learning models excel in fea-
ture extraction and representation but demand larger data-
sets and higher computational resources[157,158]. Traditional
methods are easier to implement and suitable for small-
scale, low-dimensional scenarios but struggle with complex
and multimodal data. Generative and sequential models per-
form well in noise and anomaly detection but increase train-
ing and deployment costs[154,159]. Multimodal and adaptive
capabilities are crucial in dynamic environments, requiring
a balance between flexibility and interpretability[10,64]. By
weighing accuracy, speed, scalability, and interpretability,
robust algorithms for the artificial sensory system can be
developed[1].

3. Summary and outlook

In summary, we reviewed recent advancements in the integra-
tion of AI with artificial sensory systems, focusing on replicat-
ing and augmenting sensory functions across vision, hearing,
smell, taste, and touch. Most of the studies introduced in this
review began in the late 2010s and have been actively applied
to artificial sensory systems since 2020 (Figure 6). Early
research primarily focused on single-function integration.
Since 2020, there has been a significant increase in studies,
transitioning from single-function applications to multifunc-
tional integration and optimization. For now, the combination

of AI and sensors is increasingly applied to complex real-
world scenarios, emphasizing interactive, application-oriented
functionalities and efficient adaptation to real environments.
Leveraging advanced signal processing and AI models, these
systems convert diverse environmental inputs into signals akin
to human perception, effectively simulating sensory and cog-
nitive processes. These developments significantly improve
the accuracy of cognitive simulation, enabling artificial sens-
ory systems to surpass natural human senses. They can adapt to
dynamic environments in real time based on past experiences,
offering proactive responses. Furthermore, these systems con-
tinuously optimize their perceptual mechanisms and provide
early predictions or warnings for potential hazards.

Despite these advancements in this field, the integration
of AI with artificial sensory systems still has technological
challenges for real-world applications (Figure 7). First, the
adaptability of AI algorithms to environmental factors such
as temperature and humidity fluctuations, or chemical pol-
lution should be solved. In addition to the target percep-
tion of the sensors, it is necessary to develop denoising and
calibration algorithms to effectively filter out extrinsic noise
while ensuring that the sensors provide accurate perception
data in complex environments (Figure 7(a)). For example,
in medical rehabilitation applications utilizing e-skin, pres-
sure sensors must consistently perform denoising to account
for real-life noise variations and external temperature changes
unique to each user. Similarly, in industrial leak alarming
applications employing e-nose, gas sensors must distinguish
noise caused by fluctuations in temperature and humidity,
as they are highly sensitive to these environmental changes.
These targeted examples highlight both the potential of AI-
sensor integration and the necessity for adaptive solutions
across different fields. The stability of the algorithms is cru-
cial for the long-term operation and commercial potential of
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Figure 6. The development timeline of AI integration with artificial sensory systems. The number next to the author’s name corresponds to
the reference number for the respective study.

Figure 7. Technical challenges and opportunities for further innovation. (a) The adaptability of AI algorithms to environmental factors.
(b) Consistency in sensor device production. (c) Specification compatibility and environmental adaptability. (d) Multi-signal transfer and
algorithm adaptability. (e) Cloud integration and module robustness. (f) Biomimetic expansion and quantum-neuromorphic integration.
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the systems. Additionally, as the number of integrated sensors
in the artificial sensory system increases, the complexity of
data management and protection rises significantly. Thus, it
is essential to systematically organize raw data into accur-
ately labeled datasets, apply appropriate preprocessing tech-
niques, and implement efficient storage and retrieval strategies
for effective data management (Figure 7(b)). Typically, such
systems require several gigabytes of data or thousands of
labeled samples to effectively conduct training and real-time
processing. The exponential growth in data volume not only
places higher demands on storage solutions but also raises
additional challenges. Consistency in device production is a
significant issue, as variations in materials and device config-
urations can impact sensor data quality, leading to instabil-
ity in AI performance. Ensuring the consistency of mater-
ial performance and manufacturing processes through strict
quality control standards, automated production lines, and
online monitoring systems can effectively enhance the stabil-
ity of sensor data quality and AI performance (Figure 7(c)).
Furthermore, the cost of implementing and maintaining these
systems is a key consideration, as it may restrict widespread
adoption. Costs related to hardware production, system main-
tenance, and upgrading existing infrastructure could present
financial barriers to large-scale deployment. If there are sig-
nificant differences in the sensor outputs, it may introduce
biases when the models process the data, thereby affecting
the overall sensory capability and adaptability. Furthermore,
artificial sensory systems require a large amount of consist-
ent and high-quality data for training, and insufficient produc-
tion consistency can make data acquisition challenging, lim-
iting the performance of AI algorithms. Therefore, ensuring
production consistency not only enhances sensor performance
but also supports the application and adaptability of AI sys-
tems in dynamic environments. Another crucial factor is the
compatibility of these new systems with existing technolo-
gies. Legacy systems may require substantial modifications
or upgrades to accommodate AI-driven artificial sensory sys-
tems, which can increase the complexity and cost of imple-
mentation (Figure 7(d)). Lastly, the rapid development of AI
and new sensor engineering presents significant challenges
for whole system design. The focus needs to be on modu-
larity and scalability to ensure flexibility in adapting to fast
technological changes. By integrating a hybrid architecture
of cloud and edge computing, real-time data processing can
be achieved while reducing the burden on central servers and
enhancing data processing flexibility (Figure 7(e)). In sensor
design, machine learning can accelerate the reverse design
process, automatically optimizing parameters to improve per-
formance, ensuring that the system remains adaptable to chan-
ging conditions. To handle complex data processing needs,
adaptive algorithms can dynamically allocate resources and
improve efficiency. Through technological integration, mod-
ular design, and algorithmic optimization, systems can main-
tain flexible and easily upgrade as technology evolves, ensur-
ing sustainability. In addition, future exploration could focus
on the integration of emerging technologies such as quantum
sensing, neuromorphic computing architectures, and bioin-
spired sensory devices (Figure 7(f)). These approaches are

expected to significantly enhance the resolution and adapt-
ability of artificial perception systems, providing overall per-
formance improvements and the expansion of application
domains. If these remaining challenges are further researched
and improved, we can truly enter an era of digital transform-
ation with artificial sensory systems, fundamentally changing
human interaction with technology and contributing to a safer,
more convenient living environment.
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